Veränderungen der Arbeitswelt durch Künstliche Intelligenz
Anwendungsmöglichkeiten und Auswirkungen des Einsatzes künstlicher Intelligenz auf den Arbeitsmarkt werden breit diskutiert. Welche Folgen für Beschäftigung, Löhne und Qualifikationsanforderungen sind zu erwarten? Birgt die Nutzung automatisierter Entscheidungssysteme (z.B. für die Personalauswahl) ein Diskriminierungsrisiko? Wie wirkt sich der Einsatz von künstlicher Intelligenz auf die Arbeitsqualität aus?
Dieses Themendossier stellt Literatur zum Stand der Forschung zusammen.
Im Filter „Autorenschaft“ können Sie auf IAB-(Mit-)Autorenschaft eingrenzen.
-
Literaturhinweis
Zentrale Befunde zu aktuellen Arbeitsmarktthemen 2025 (2025)
Anger, Silke ; Wolter, Stefanie; Lietzmann, Torsten ; Lehmer, Florian ; Zika, Gerd; Artmann, Elisabeth; Wolff, Joachim; Leber, Ute; Weber, Enzo ; Lang, Julia ; Walwei, Ulrich ; Kuhn, Sarah; Wanger, Susanne ; Vom Berge, Philipp ; Braun, Wolfgang; Brücker, Herbert ; Trenkle, Simon ; Kubis, Alexander; Stephan, Gesine ; Kosyakova, Yuliya ; Seibert, Holger; Janssen, Simon; Reims, Nancy ; Janser, Markus ; Ramos Lobato, Philipp; Jahn, Elke ; Oberfichtner, Michael ; Hohmeyer, Katrin ; Müller, Christoph ; Hohendanner, Christian ; Matthes, Britta ; Hiesinger, Karolin ; Wenzig, Claudia; Heß, Pascal ; Bruckmeier, Kerstin ; Hellwagner, Timon ; Stepanok, Ignat ; Haas, Anette; Rauch, Angela ; Gläser, Nina; Müller, Dana ; Gherbaoui, Samia; Arntz, Melanie ; Gellermann, Jan; Stops, Michael ; Fitzenberger, Bernd ; Popp, Martin ; Dietz, Martin; Bächmann, Ann-Christin ; Dauth, Wolfgang ; Mense, Andreas ; Collischon, Matthias ; Roth, Duncan ; Christoph, Bernhard ;Zitatform
Anger, Silke, Melanie Arntz, Elisabeth Artmann, Ann-Christin Bächmann, Wolfgang Braun, Kerstin Bruckmeier, Herbert Brücker, Bernhard Christoph, Matthias Collischon, Wolfgang Dauth, Martin Dietz, Bernd Fitzenberger, Jan Gellermann, Samia Gherbaoui, Nina Gläser, Anette Haas, Timon Hellwagner, Pascal Heß, Karolin Hiesinger, Christian Hohendanner, Katrin Hohmeyer, Elke Jahn, Markus Janser, Simon Janssen, Yuliya Kosyakova, Stefanie Wolter, Torsten Lietzmann, Florian Lehmer, Gerd Zika, Joachim Wolff, Ute Leber, Enzo Weber, Julia Lang, Ulrich Walwei, Sarah Kuhn, Susanne Wanger, Philipp Vom Berge, Simon Trenkle, Alexander Kubis, Gesine Stephan, Holger Seibert, Nancy Reims, Philipp Ramos Lobato, Michael Oberfichtner, Christoph Müller, Britta Matthes, Claudia Wenzig, Ignat Stepanok, Angela Rauch, Dana Müller, Michael Stops, Martin Popp, Andreas Mense & Duncan Roth (2025): Zentrale Befunde zu aktuellen Arbeitsmarktthemen 2025. Nürnberg, 21 S. DOI:10.48720/IAB.GP.2505.1
Abstract
"Digitalisierung und Künstliche Intelligenz, Dekarbonisierung und demografischer Wandel werden den Arbeitsmarkt in den kommenden Jahren erheblich verändern. Gleichzeitig wird eine Deindustrialisierung Deutschlands befürchtet. Handlungsbedarf besteht beispielsweise bei der Sicherung des Arbeitskräftebedarfs – und damit verbunden bei den Themen Aus- und Weiterbildung –, bei der Reduzierung der Arbeitslosigkeit und insbesondere der Langzeitarbeitslosigkeit sowie bei der sozialen Absicherung von Solo-Selbständigen Zu all diesen und zahlreichen weiteren wichtigen Themen fasst die IAB-Broschüre „Zentrale Befunde zu aktuellen Arbeitsmarkt-Themen 2025“ die zentralen wissenschaftlichen Befunde kompakt zusammen. Sie bietet zudem Handlungsempfehlungen für die Arbeitsmarktpolitik, die aus den wissenschaftlichen Befunden abgeleitet wurden." (Autorenreferat, IAB-Doku)
Beteiligte aus dem IAB
Anger, Silke ; Wolter, Stefanie; Lietzmann, Torsten ; Lehmer, Florian ; Zika, Gerd; Artmann, Elisabeth; Wolff, Joachim; Leber, Ute; Weber, Enzo ; Lang, Julia ; Walwei, Ulrich ; Kuhn, Sarah; Wanger, Susanne ; Vom Berge, Philipp ; Braun, Wolfgang; Brücker, Herbert ; Trenkle, Simon ; Kubis, Alexander; Stephan, Gesine ; Kosyakova, Yuliya ; Seibert, Holger; Janssen, Simon; Reims, Nancy ; Janser, Markus ; Ramos Lobato, Philipp; Jahn, Elke ; Oberfichtner, Michael ; Hohmeyer, Katrin ; Müller, Christoph ; Hohendanner, Christian ; Matthes, Britta ; Hiesinger, Karolin ; Wenzig, Claudia; Heß, Pascal ; Bruckmeier, Kerstin ; Hellwagner, Timon ; Stepanok, Ignat ; Haas, Anette; Rauch, Angela ; Gläser, Nina; Müller, Dana ; Gellermann, Jan; Stops, Michael ; Fitzenberger, Bernd ; Popp, Martin ; Dietz, Martin; Bächmann, Ann-Christin ; Dauth, Wolfgang ; Mense, Andreas ; Collischon, Matthias ; Roth, Duncan ; Christoph, Bernhard ; -
Literaturhinweis
Digitalisierung und Wandel der Beschäftigung (DiWaBe 2.0): Eine Datengrundlage für die Erforschung von Künstlicher Intelligenz und anderer Technologien in der Arbeitswelt (2025)
Arntz, Melanie ; Baum, Myriam; Wischniewski, Sascha ; Matthes, Britta ; Meyer, Sophie-Charlotte; Hartwig, Matthias; Schlenker, Oliver; Dorau, Ralf; Brüll, Eduard ; Lehmer, Florian ; Tisch, Anita ;Zitatform
Arntz, Melanie, Myriam Baum, Eduard Brüll, Ralf Dorau, Matthias Hartwig, Florian Lehmer, Britta Matthes, Sophie-Charlotte Meyer, Oliver Schlenker, Anita Tisch & Sascha Wischniewski (2025): Digitalisierung und Wandel der Beschäftigung (DiWaBe 2.0): Eine Datengrundlage für die Erforschung von Künstlicher Intelligenz und anderer Technologien in der Arbeitswelt. (baua: Bericht), Dortmund, 48 S. DOI:10.21934/baua:bericht20250225
Abstract
"In Deutschland nutzt bereits mehr als die Hälfte der Beschäftigten Künstliche Intelligenz (KI) am Arbeitsplatz - überwiegend jedoch informell. Dies deutet darauf hin, dass viele Beschäftigte KI als hilfreiche Unterstützung wahrnehmen, zugleich aber die formelle Einführung seitens der Betriebe den Erwartungen der Beschäftigten hinterherhinkt. Der vorliegende Bericht präsentiert die Ergebnisse der DiWaBe 2.0-Befragung, einer repräsentativen Querschnittserhebung von rund 9.800 sozialversicherungspflichtig Beschäftigten in Deutschland, die im Jahr 2024 durchgeführt wurde. Ziel der Befragung ist es, eine Datengrundlage zu schaffen, um die Auswirkungen des technologischen Wandels - und insbesondere von KI - auf die Arbeitswelt abzuschätzen. Im Fokus stehen dabei vor allem Veränderungen von Tätigkeiten und Anforderungen am Arbeitsplatz, Arbeitsbedingungen und -organisation, Weiterbildungsaktivitäten sowie die Gesundheit der Beschäftigten. Die Ergebnisse zeigen, dass die Nutzung von KI stark von individuellen und beruflichen Faktoren wie Berufssegment, Bildung, Alter und Geschlecht abhängt. So nutzt nur knapp ein Drittel der Beschäftigten ohne Bildungsabschluss KI, während dieser Anteil bei Beschäftigten mit Hochschul-, Meister-oder Technikerabschluss fast 80 % beträgt. Erste multivariate Analysen zeigen, dass Beschäftigte, die ihre KI-Nutzung in den letzten fünf Jahren intensiviert haben, von komplexeren Tätigkeitsanforderungen berichten, insbesondere in den Bereichen Schreiben, Programmierung und Mathematik. Zudem ist eine intensivierte KI-Nutzung mit einer höheren Arbeitsautonomie, aber auch mit einer höheren Arbeitsintensität verbunden. Es zeigt sich jedoch kein statistisch signifikanter Zusammenhang zwischen der Nutzung von KI und der Gesundheit der Beschäftigten. Zudem unterscheiden sich Beschäftigte mit KI-Nutzung nicht von Nichtnutzenden hinsichtlich ihrer Teilnahme an Weiterbildung." (Autorenreferat, IAB-Doku)
-
Literaturhinweis
AI and employment in Europe (2025)
Zitatform
Guarascio, Dario & Jelena Reljic (2025): AI and employment in Europe. In: Economics Letters, Jg. 247. DOI:10.1016/j.econlet.2025.112183
Abstract
"This paper contributes to the growing research on AI's labor market impact by presenting novel evidence on the heterogeneous employment effects of AI across EU countries from 2012 to 2022. While concerns persist about AI's disruptive potential, our findings show that occupations more exposed to AI technologies experience stronger employment growth, all else being equal. However, these effects are not uniform across the EU. Positive employment outcomes are concentrated in Innovation Leaders (Belgium, Denmark, Finland, the Netherlands and Sweden) and Strong Innovators (Austria, Cyprus, France, Germany, Ireland and Luxembourg), emphasizing the context-dependent nature of AI's impact. These findings reflect the uneven distribution of innovation capabilities, with a country's innovation system and ‘absorptive capacity’ playing a crucial role in fully harnessing AI's potential for employment (and economic) growth. Ultimately, this research challenges the notion of AI as universally beneficial or harmful, highlighting its asymmetric effects across countries and occupations." (Author's abstract, IAB-Doku, © 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.) ((en))
-
Literaturhinweis
Diverging paths: AI exposure and employment across European regions (2025)
Zitatform
Guarascio, Dario, Jelena Reljic & Roman Stöllinger (2025): Diverging paths: AI exposure and employment across European regions. In: Structural Change and Economic Dynamics, Jg. 73, S. 11-24. DOI:10.1016/j.strueco.2024.12.010
Abstract
"This study explores exposure to artificial intelligence (AI) technologies and employment patterns in Europe. First, we provide a thorough mapping of European regions focusing on the structural factors—such as sectoral specialisation, R&D capacity, productivity and workforce skills—that may shape diffusion as well as economic and employment effects of AI. To capture these differences, we conduct a cluster analysis which group EU regions in four distinct clusters: high-tech service and capital centres, advanced manufacturing core, southern and eastern periphery. We then discuss potential employment implications of AI in these regions, arguing that while regions with strong innovation systems may experience employment gains as AI complements existing capabilities and production systems, others are likely to face structural barriers that could eventually exacerbate regional disparities in the EU, with peripheral areas losing further ground." (Author's abstract, IAB-Doku, © 2024 The Author(s). Published by Elsevier B.V.) ((en))
-
Literaturhinweis
Artificial Intelligence and the Labor Market (2025)
Zitatform
Hampole, Menaka, Dimitris Papanikolaou, Lawrence D. W. Schmidt & Bryan Seegmiller (2025): Artificial Intelligence and the Labor Market. (NBER working paper / National Bureau of Economic Research 33509), Cambridge, Mass, 58 S.
Abstract
"We leverage recent advances in NLP to construct measures of workers' task exposure to AI and machine learning technologies over the 2010 to 2023 period that vary across firms and time. Using a theoretical framework that allows for a labor-saving technology to affect worker productivity both directly and indirectly, we show that the impact on wage earnings and employment can be summarized by two statistics. First, labor demand decreases in the average exposure of workers' tasks to AI technologies; second, holding the average exposure constant, labor demand increases in the dispersion of task exposures to AI, as workers shift effort to tasks that are not displaced by AI. Exploiting exogenous variation in our measures based on pre-existing hiring practices across firms, we find empirical support for these predictions, together with a lower demand for skills affected by AI. Overall, we find muted effects of AI on employment due to offsetting effects: highly-exposed occupations experience relatively lower demand compared to less exposed occupations, but the resulting increase in firm productivity increases overall employment across all occupations." (Author's abstract, IAB-Doku) ((en))
-
Literaturhinweis
Artificial intelligence in the workplace: insights into the transformation of customer services (2025)
Janssen, Simon;Zitatform
Janssen, Simon (2025): Artificial intelligence in the workplace: insights into the transformation of customer services. In: IAB-Forum H. 22.04.2025, 2025-04-22. DOI:10.48720/IAB.FOO.20250422.01
Abstract
"How does the use of artificial intelligence in training affect employee productivity? These and other questions were investigated as part of the long-term research project “ai:conomics” using company data from various large European companies. Initial results suggest that AI can have a positive impact on employee productivity, especially for new employees." (Author's abstract, IAB-Doku) ((en))
Beteiligte aus dem IAB
Janssen, Simon; -
Literaturhinweis
Digitalisierung der Arbeitswelt: Durch künstliche Intelligenz sind inzwischen auch viele Expertentätigkeiten ersetzbar (2025)
Kuhn, Sarah; Seibert, Holger;Zitatform
Kuhn, Sarah & Holger Seibert (2025): Digitalisierung der Arbeitswelt: Durch künstliche Intelligenz sind inzwischen auch viele Expertentätigkeiten ersetzbar. (IAB-Regional. Berichte und Analysen aus dem Regionalen Forschungsnetz. IAB Berlin-Brandenburg 01/2025), 34 S. DOI:10.48720/IAB.REBB.2501
Abstract
"Durch neue digitale Technologien verändert sich der deutsche Arbeitsmarkt. Dies gilt besonders für das Ausmaß, in dem Berufe aktuell potenziell durch den Einsatz von Computern oder computergesteuerten Maschinen ersetzbar sind, dem so genannten Substituierbarkeitspotenzial. Es beschreibt, welcher Anteil an Tätigkeiten in einem Beruf schon heute durch den Einsatz moderner Technologien ersetzt werden könnte. Nach wie vor ist zwar das Substituierbarkeitspotenzial bei den Helfer*innen- und Fachkraftberufen am höchsten. Am stärksten gestiegen ist das Potenzial jedoch bei den Expert*innenberufen (u. a. durch generative Künstliche Intelligenz). Besonders bei den IT- und naturwissenschaftlichen Dienstleistungsberufen sind hohe Zuwachsraten zwischen 2019 und 2022 zu verzeichnen. Der vorliegende Beitrag fokussiert sich auf den Arbeitsmarkt in Brandenburg und Berlin. Wichtig zu betonen ist, dass es hier um Potenziale technischer Ersetzbarkeit geht. Ob und inwiefern die technischen Möglichkeiten auch tatsächlich umgesetzt werden, steht nicht fest. Es kann Gründe geben, die gegen eine tatsächliche Substituierung sprechen, beispielsweise weil eine Umstellung zu komplex wäre oder ethische Bedenken dem entgegenstehen. Unstrittig ist jedoch, dass auf der einen Seite einige Tätigkeiten durch die Digitalisierung wegfallen bzw. automatisiert werden, andererseits aber auch neue Tätigkeiten und Berufe entstehen. Daher kann ein hohes Substituierungspotenzial als Indikator für einen Wandel der Arbeitswelt gesehen werden." (Autorenreferat, IAB-Doku)
-
Literaturhinweis
Bots im Büro: Künstliche Intelligenz und der Wandel von Angestelltenarbeit in der digitalen Transformation (2025)
Zitatform
Lühr, Thomas & Tobias Kämpf (2025): Bots im Büro. Künstliche Intelligenz und der Wandel von Angestelltenarbeit in der digitalen Transformation. (Hans-Böckler-Stiftung. Study 494), Düsseldorf: Hans-Böckler-Stiftung, Düsseldorf, 98 S.
Abstract
"Mit der digitalen Transformation kommt es zu einem Schub in der Automatisierung von Arbeit. Die Einführung von Künstlicher Intelligenz führt zur grundlegenden Restrukturierung der Arbeitsinhalte und -prozesse im Büro. Damit gehen nicht nur Risiken von Funktionsverlusten bis hin zum Verlust des Arbeitsplatzes einher, sondern auch neue Machtpotenziale. Diese prägen das Bewusstsein der Angestellten wesentlich. Künstliche Intelligenz funktioniert nicht ohne Mitbestimmung - mit Mitbestimmung ergeben sich neue Ansatzpunkte für eine arbeitspolitische Vorwärtsstrategie. Die vorliegende Studie nimmt eine empirisch gestützte Analyse der Potenziale vor, die der Automatisierungsschub für die Beschäftigten und ihre Interessenvertretungen tatsächlich bietet." (Autorenreferat, IAB-Doku)
-
Literaturhinweis
Incorporating AI impacts in BLS employment projections: occupational case studies (2025)
Machovec, Christine; Rolen, Emily; Rieley, Michael;Zitatform
Machovec, Christine, Michael Rieley & Emily Rolen (2025): Incorporating AI impacts in BLS employment projections: occupational case studies. In: Monthly labor review H. February. DOI:10.21916/mlr.2025.1
Abstract
"In the last few years, artificial intelligence (AI) has advanced rapidly, finding growing applications across industries and occupations. This development has generated interest in how the U.S. Bureau of Labor Statistics assesses and incorporates AI’s potential labor market impacts in its employment projections. In this article, we explain the Bureau’s approach to this type of projections work, illustrating it with several occupational case studies based on research done for the 2023–33 projections cycle. The case studies focus on selected occupations in the computer, legal, business and financial, and architecture and engineering occupational groups." (Author's abstract, IAB-Doku) ((en))
-
Literaturhinweis
KI und Beratung (2025)
Zitatform
Matthes, Britta (2025): KI und Beratung. In: Dvb-Forum, Jg. 64, H. 1, 2025-02-14.
Abstract
"Wie KI und andere digitale Technologien den Arbeitsmarkt verändern: Am IAB werden wir immer wieder danach gefragt, welche Berufe angesichts der rasanten technologischen Entwicklungen der letzten Jahre überhaupt noch Zukunft haben. Bislang hat man zur Beantwortung dieser Frage Prognosen zu Rate gezogen. Hier wurde anfangs – unter Berücksichtigung verschiedener relativ stabiler Faktoren wie dem Erwerbspersonenpotenzial, der wirtschaftlichen Entwicklung oder der zu erwartenden Migration – hochgerechnet, wie sich die Zahl der Berufsanfänger auf die verschiedenen Berufe und Qualifikationsniveaus verteilt, wenn die Entwicklung sich wie in der Vergangenheit fortsetzen würde. Schon früh wurde jedoch deutlich, dass diese Faktoren weniger stabil sind als ursprünglich angenommen. Um diese Dynamik zu berücksichtigen, wurde dieser Ansatz erweitert, indem nunmehr Projektionen erstellt werden. Dazu werden Annahmen über die Folgen bestimmter, äußerst wahrscheinlicher Ereignisse oder Verhaltensweisen getroffen, für die sich (noch) keine langfristige Zahlenbasis finden lässt. So gibt die QuBe-Projektion einen langfristigen Überblick über die voraussichtliche Entwicklung des Arbeitskräftebedarfs und -angebotes nach Qualifikationen und Berufen unter einer Reihe von Annahmen über zum Beispiel die Folgen des Klimawandels oder den Ausbau der ökologischen Landwirtschaft. Außerdem werden anhand von Abweichungen zwischen diesem Basismodell und Szenarien die absehbaren Folgen bestimmter Vorhaben oder Ereignisse, wie zum Beispiel der Maßnahmen zur Energie- und -Mobilitätswende abgeschätzt (https://www.bibb.de/de/202333.php). Allerdings sind diese Modelle sehr komplex und es stellt sich die Frage, inwieweit solche Projektionen für die Bildungs- und Berufsberatung einzelner Personen sinnvoll genutzt werden können. Hinzu kommt derzeit, dass die technologische Entwicklung derart schnell voranschreitet, dass verstärkt mit Umwälzungen auf dem Arbeitsmarkt gerechnet werden muss, die auch altbekannte Zusammenhänge in Frage stellen könnten. Für die einzelne Person steht die Frage im Raum, mit welchen Konsequenzen sie selbst rechnen muss, wenn neue Technologien zum Einsatz kommen: Reicht es aus, sich auf den aktuellen Wissensstand im eigenen Beruf zu bringen? Womit sollte man sich konkret beschäftigen, um den Anforderungen des Berufes weiterhin gewachsen zu sein? Ist es zielführender, sich beruflich neu zu orientieren?" (Textauszug, IAB-Doku, © wbv)
Weiterführende Informationen
Keynote für die Fachtagung "Digitalisierung in der Beratung reloaded" Mannheim, 28. November 2024 -
Literaturhinweis
Technological Change and the Upskilling of European Workers (2025)
Zitatform
McGuinness, Seamus, Paul Redmond, Konstantinos Pouliakas, Lorcan Kelly & Luke Brosnan (2025): Technological Change and the Upskilling of European Workers. (IZA discussion paper / Forschungsinstitut zur Zukunft der Arbeit 17753), Bonn, 22 S.
Abstract
"Using the second wave of the European Skills and Jobs survey, this paper measures the relationship between technological change that automates or augments workers' job tasks and their participation in work-related training. We find that 58 per cent of European employees experienced no change in the need to learn new technologies in their jobs during the 2020-21 period. Of those exposed to new digital technology, 14 per cent did not experience any change in job tasks, 10 per cent reported that new tasks had been created while 5 per cent only saw some of their tasks being displaced by new technology. The remaining 13 per cent simultaneously experienced both task displacement and task creation. Our analysis shows that employees in jobs impacted by new digital technologies are more likely to have to react to unpredictable situations, thus demonstrating a positive link between technologically driven task disruption and job complexity. We show a strong linear relationship between technologically driven job task disruption and the need for job-related training, with training requirements increasing the greater the impact of new technologies on task content." (Author's abstract, IAB-Doku) ((en))
-
Literaturhinweis
Wenn Ihr Job von KI betroffen ist, kann das eine große Chance sein: Gastbeitrag (2025)
Zitatform
Weber, Enzo (2025): Wenn Ihr Job von KI betroffen ist, kann das eine große Chance sein. Gastbeitrag. In: Frankfurter Allgemeine Zeitung H. 12.02.2025 Frankfurt am Main.
Abstract
"Künstliche Intelligenz ersetzt immer mehr Arbeitsplätze. Sie dringt in mehr und mehr Tätigkeitsbereiche vor. Mittlerweile sind auch viele hoch qualifizierte Jobs betroffen – Ärzte, Rechtsanwältinnen, Journalisten und viele andere. Wir müssen uns diesem Wandel anpassen." (Autorenreferat, IAB-Doku, © Frankfurter Allgemeine Zeitung)
Weiterführende Informationen
Volltext-Zugang über Verlag oder sonstigen Anbieter (möglicherweise kostenpflichtig) -
Literaturhinweis
Does automation replace experts or augment expertise? The answer is yes (Interview) (2025)
Zitatform
Winters, Jutta & Jonathan P. Latner; David Autor (interviewte Person) (2025): Does automation replace experts or augment expertise? The answer is yes (Interview). In: IAB-Forum H. 09.01.2025. DOI:10.48720/IAB.FOO.20250109.01
Abstract
"David Autor, Professor of economics at the Massachusetts Institute of Technology (MIT), gives a Special Lecture at the IAB on 15 January 2025. In this accompanying interview, he discusses the impact of Artificial Intelligence on wages and employment, outlines the crucial role of expertise and gives insights on policy-approaches for supporting workers in rapidly changing labor markets." (Author's abstract, IAB-Doku) ((en))
-
Literaturhinweis
Learning from Ricardo and Thompson: Machinery and Labor in the Early Industrial Revolution, and in the Age of AI (2024)
Zitatform
Acemoglu, Daron & Simon Johnson (2024): Learning from Ricardo and Thompson: Machinery and Labor in the Early Industrial Revolution, and in the Age of AI. (NBER working paper / National Bureau of Economic Research 32416), Cambridge, Mass, 45 S. DOI:10.3386/w32416
Abstract
"David Ricardo initially believed machinery would help workers but revised his opinion, likely based on the impact of automation in the textile industry. Despite cotton textiles becoming one of the largest sectors in the British economy, real wages for cotton weavers did not rise for decades. As E.P. Thompson emphasized, automation forced workers into unhealthy factories with close surveillance and little autonomy. Automation can increase wages, but only when accompanied by new tasks that raise the marginal productivity of labor and/or when there is sufficient additional hiring in complementary sectors. Wages are unlikely to rise when workers cannot push for their share of productivity growth. Today, artificial intelligence may boost average productivity, but it also may replace many workers while degrading job quality for those who remain employed. As in Ricardo's time, the impact of automation on workers today is more complex than an automatic linkage from higher productivity to better wages." (Author's abstract, IAB-Doku) ((en))
-
Literaturhinweis
Artificial Intelligence and the health workforce: Perspectives from medical associations on AI in health (2024)
Almyranti, Margarita; Eiszele, Samuel; Sutherland, Eric; Ash, Nachman;Zitatform
Almyranti, Margarita, Eric Sutherland, Nachman Ash & Samuel Eiszele (2024): Artificial Intelligence and the health workforce. Perspectives from medical associations on AI in health. (OECD Artificial Intelligence Papers 28), Paris, 53 S. DOI:10.1787/9a31d8af-en
Abstract
"Healthcare has progressed through advancements in medicine, leading to improved global life expectancy. Nevertheless, the sector grapples with increasing challenges such as heightened demand, soaring costs, and an overburdened workforce. Factors contributing to health workforce strain include ageing populations, increasing burden from non-communicable and chronic diseases, healthcare providers' burnout, and evolving patient expectations. Artificial Intelligence (AI) could potentially transform healthcare by alleviating some of these pressures. But AI in health poses risks to health providers through potential workforce disruption – with changing roles requiring adapted skills with some functions subject to automation. Striking a balance between innovation and safeguards is imperative." (Author's abstract, IAB-Doku) ((en))
-
Literaturhinweis
KI für die Fachkräftesicherung nutzen: Lösungsansätze für Automatisierung, Teilhabe und Wissenstransfer (2024)
André, Elisabeth; Suchy, Oliver; Steil, Jochen; Bittner, Eva; Wilkens, Uta ; Heister, Michael; Bullinger-Hoffmann, Angelika; Huchler, Norbert ; Schmidt, Christoph M.; Peissner, Matthias; Stich, Andrea; Prasuhn, Pierre;Zitatform
André, Elisabeth, Angelika Bullinger-Hoffmann, Eva Bittner, Michael Heister, Norbert Huchler, Matthias Peissner, Pierre Prasuhn, Christoph M. Schmidt, Jochen Steil, Andrea Stich, Oliver Suchy & Uta Wilkens (2024): KI für die Fachkräftesicherung nutzen. Lösungsansätze für Automatisierung, Teilhabe und Wissenstransfer. München, 41 S. DOI:10.48669/pls_2024-2
Abstract
"Ob im Handwerk, Medizin oder der Verwaltung – in fast allen Branchen kommen Fachkräfteengpässe auf uns zu oder sind bereits spürbar. Zunehmend verstärkt durch demografische Entwicklungen wie den bevorstehenden Renteneintritt der Babyboomer. Um die Fachkräftebasis von morgen zu sichern, kann auch Künstliche Intelligenz (KI) als technologischer Baustein – vor allem in den Bereichen Automatisierung und KI-basierte Assistenz – eine bedeutende Rolle spielen. Das Whitepaper gibt einen Überblick, wie KI-Technologien gezielt zur Fachkräftesicherung beitragen können, um die Wettbewerbsfähigkeit zu stärken und Arbeitsplätze in Deutschland zu sichern." (Autorenreferat, IAB-Doku)
-
Literaturhinweis
Artificial Intelligence – Gender-Specific Differences in Perception, Understanding, and Training Interest (2024)
Zitatform
Armutat, Sascha, Malte Wattenberg & Nina Mauritz (2024): Artificial Intelligence – Gender-Specific Differences in Perception, Understanding, and Training Interest. In: C.-P. Marti Ballester (ed.) (2024): Proceedings of the 7th International Conference on Gender Research, S. 36-43. DOI:10.34190/icgr.7.1.2163
Abstract
"In light of the growing importance of Artificial Intelligence (AI) in science, business, and society, broad acceptance is crucial. However, recent studies indicate a significant underrepresentation of women in the emerging AI-driven professions of the future job market. This hampers the innovation potential of technologies due to the lack of diverse perspectives in development. Gender-specific differences also manifest in the perception of AI: Men tend to view AI applications more positively, rate their own AI competencies higher, and have more trust in the technology compared to women. However, both genders agree on the critical importance of the comprehensibility of AI decisions and are equally willing to pursue further education in the field of AI. This study aimed to investigate gender-relevant aspects in the perception and understanding of AI, as well as the need for further education and opportunities for communication and exchange on the topic of AI. To achieve this, focus groups with female students were conducted in May 2023. The analysis of the conversation data and materials used was carried out using an inductive coding method. Overall, women perceive knowledge as the key to generating more interest in AI. However, they also identify obstacles such as discrimination, gender stereotypes, and a lack of gender equality. Additionally, they desire more practical examples, improved communication regarding the advantages and disadvantages of AI, as well as more democratic and transparent decision-making processes. The paper emphasizes that an inclusive educational environment requires awareness and education for women, along with measures against discriminatory barriers and stereotypes. Furthermore, it suggests the early involvement of women in the development of AI applications and the establishment of clear rules to ensure gender equality in the workplace. These study findings provide valuable support to companies in the gender-specific planning of awareness and training processes for introducing AI." (Author's abstract, IAB-Doku) ((en))
-
Literaturhinweis
Does Artificial Intelligence Help or Hurt Gender Diversity? Evidence from Two Field Experiments on Recruitment in Tech (2024)
Zitatform
Avery, Mallory, Andreas Leibbrandt & Joseph Vecci (2024): Does Artificial Intelligence Help or Hurt Gender Diversity? Evidence from Two Field Experiments on Recruitment in Tech. (CESifo working paper 10996), München, 70 S.
Abstract
"The use of Artificial Intelligence (AI) in recruitment is rapidly increasing and drastically changing how people apply to jobs and how applications are reviewed. In this paper, we use two field experiments to study how AI recruitment tools can impact gender diversity in the male-dominated technology sector, both overall and separately for labor supply and demand. We find that the use of AI in recruitment changes the gender distribution of potential hires, in some cases more than doubling the fraction of top applicants that are women. This change is generated by better outcomes for women in both supply and demand. On the supply side, we observe that the use of AI reduces the gender gap in application completion rates. Complementary survey evidence suggests that anticipated bias is a driver of increased female application completion when assessed by AI instead of human evaluators. On the demand side, we find that providing evaluators with applicants' AI scores closes the gender gap in assessments that otherwise disadvantage female applicants. Finally, we show that the AI tool would have to be substantially biased against women to result in a lower level of gender diversity than found without AI." (Author's abstract, IAB-Doku) ((en))
Ähnliche Treffer
auch erschienen als: Monash Economics Working Papers, 2023-09 -
Literaturhinweis
The impact of Robots on Labour market transitions in Europe (2024)
Zitatform
Bachmann, Ronald, Myrielle Gonschor, Piotr Lewandowski & Karol Madoń (2024): The impact of Robots on Labour market transitions in Europe. In: Structural Change and Economic Dynamics, Jg. 70, S. 422-441. DOI:10.1016/j.strueco.2024.05.005
Abstract
"Dieses Papier untersucht die Auswirkungen von Robotern auf Arbeitsmarkttransitionen in 16 europäischen Ländern. Generell reduzieren Roboter Übergänge von der Beschäftigung in die Arbeitslosigkeit und erhöhen die Wahrscheinlichkeit, einen neuen Job zu finden. Arbeitskosten sind eine wichtige Erklärung für die beobachteten Unterschiede zwischen Ländern: In Ländern mit niedrigeren Arbeitskosten zeigt sich ein stärkerer Effekt auf Einstellungen und Trennungen. Diese Auswirkungen sind bei Arbeitskräften in Berufen mit manuellen oder kognitiven Routineaufgaben besonders ausgeprägt, bei Berufen mit nicht-routine kognitiven Aufgaben hingegen vernachlässigbar. Für junge und ältere Arbeitskräfte in Ländern mit niedrigeren Arbeitskosten wirken sich Roboter positiv auf Übergänge aus. Unsere Ergebnisse deuten darauf hin, dass die Einführung von Robotern in den meisten europäischen Ländern zu einem Anstieg der Beschäftigung und einem Rückgang der Arbeitslosigkeit geführt hat, vor allem durch einen Rückgang der Übergänge in die Arbeitslosigkeit." (Autorenreferat, IAB-Doku)
-
Literaturhinweis
Navigating career stages in the age of artificial intelligence: A systematic interdisciplinary review and agenda for future research (2024)
Bankins, Sarah ; Jooss, Stefan ; Restubog, Simon Lloyd D. ; Ocampo, Anna Carmella ; Shoss, Mindy; Marrone, Mauricio ;Zitatform
Bankins, Sarah, Stefan Jooss, Simon Lloyd D. Restubog, Mauricio Marrone, Anna Carmella Ocampo & Mindy Shoss (2024): Navigating career stages in the age of artificial intelligence: A systematic interdisciplinary review and agenda for future research. In: Journal of vocational behavior, Jg. 153. DOI:10.1016/j.jvb.2024.104011
Abstract
"As artificial intelligence (AI) use expands within organizations, its influence is increasingly permeating careers and vocational domains. However, there is a notable lack of structured insights regarding AI's role in shaping individual career paths across career stages. To address this gap, we undertook a systematic literature review of 104 empirical articles, aiming to synthesize the scholarship on AI in the context of careers. Drawing upon career stage theory, we examine the implications of AI on careers, identify key barriers and enablers of AI use in this area, and reveal how the utilization of AI impacts individuals' career competencies. In doing so, we illustrate how AI actively shapes individuals' career trajectories and we dissect these effects both within and across various career stages to situate AI within the broader context of careers research. Adopting a sustainable career lens, we conclude by outlining a future research agenda that advocates for the design and adoption of AI systems that promote sustainable and equitable careers." (Author's abstract, IAB-Doku, © 2024 Elsevier) ((en))