A Global Vector Autoregression (GVAR) model for regional labour markets and its forecasting performance with leading indicators in Germany
Beschreibung
"Zwei Aspekte bezüglich der Modellierungsstrategie werden gemeinhin als entscheidend für die Genauigkeit von Prognosen betrachtet: Einerseits ein in den zu schätzenden Parametern sparsames Modell, welches nur die wichtigsten Zusammenhänge abdeckt; andererseits die Aussagekraft der vorausschauenden Information. Hier wird ein Mehrregionenmodell ähnlich einem Globalen Vektorautoregressiven (GVAR) Ansatz entwickelt. Diese Technik berücksichtigt verschiedene Strukturen der räumlich-zeitlichen Dynamik in multivariaten Gleichungssystemen, sie erlaubt regional heterogene Parameter und ist dennoch auch für Daten ohne sehr langen Beobachtungszeitraum geeignet. In diesem Modellrahmen werden regionale Co-Entwicklungen hinsichtlich ihrer vorausschauenden Information untersucht. Der Prognosegehalt räumlicher Abhängigkeiten wird dem Informationsgehalt von vorauseilenden Indikatoren gegenübergestellt, welche die allgemeine wirtschaftliche Lage, die Knappheit im Arbeitsmarkt und Umwelteinflüsse (wie etwa das Wetter) beschreiben. Die Prognosegenauigkeit wird mit deutschen regionalen Arbeitsmarktdaten in simulierten Prognosen auf unterschiedlichen Horizonten untersucht. Die Existenz einer alle anderen bestimmenden Region wird für Deutschland abgelehnt (was die polyzentrische Struktur des Landes widerspiegelt). Die Regionen folgen keinem stabilen gemeinsamen Trend, der zur Implementierung einer Kointegrationsbeziehung genutzt werden könnte. Die Berücksichtigung regionaler Abhängigkeiten verbessert die Prognosegenauigkeit gegenüber einem Modell ohne diese, wenn derselbe vorausschauende Indikator verwendet wird. Nur wenige der geprüften Indikatoren tragen bei Berücksichtigung in einem GVAR zu einer genaueren Prognose im Vergleich zu einem GVAR ohne Indikator bei." (Autorenreferat, IAB-Doku)
Zitationshinweis
Schanne, Norbert (2015): A Global Vector Autoregression (GVAR) model for regional labour markets and its forecasting performance with leading indicators in Germany. (IAB-Discussion Paper 13/2015), Nürnberg, 40 S.