Treffer 17.280
-
Integrating survey and learning analytics data for a better understanding of engagement in MOOCs
Samoilova, Evgenia, Florian Keusch & Frauke Kreuter (2018): Integrating survey and learning analytics data for a better understanding of engagement in MOOCs. In: H. Jiao, R. W. Lissitz & A. V. Wie (Hrsg.) (2018): Data analytics and psychometrics : Informing assessment practices, Charlotte, N.C., Information Age Publishing S. 247-261.
-
Schulleistungsunterschiede zwischen den deutschen Ländern
Bruckmeier, Kerstin, Georg-Benedikt Fischer & Berthold U. Wigger (2014): Schulleistungsunterschiede zwischen den deutschen Ländern. In: Wirtschaftsdienst, Jg. 94, H. 6, S. 439-443. DOI:10.1007/s10273-014-1693-7
-
When do firms evaluate further training measures?
Bächmann, Ann-Christin, Martin Abraham & Martina Huber (2019): When do firms evaluate further training measures? In: International journal of manpower, Jg. 40, H. 2, S. 190-210. DOI:10.1108/IJM-06-2017-0146
-
Recruiting abroad: an empirical analysis
Bossler, Mario (2016): Recruiting abroad: an empirical analysis. In: International Journal of Manpower, Jg. 37, H. 4, S. 590-605. DOI:10.1108/IJM-12-2014-0233
-
Collection of biomeasures in a cross-national setting
Weiss, Luzia M., Joseph Sakshaug & Axel Börsch-Supan (2018): Collection of biomeasures in a cross-national setting. Experiences in SHARE. In: T. P. Johnson, B.- E. Pennell, I. Stoop & B. Dorer (Hrsg.) (2018): Advances in comparative survey methods : multinational, multiregional and multicultural contexts (3MC), S. 623-642.
-
Das DIW-IAB-RWI-Nachbarschaftspanel
Bügelmayer, Elisabeth, Sandra Schaffner, Norbert Schanne & Theresa Scholz (2015): Das DIW-IAB-RWI-Nachbarschaftspanel. Ein Scientific-Use-File mit lokalen Aggregatdaten und dessen Verknüpfung mit dem deutschen Sozio-ökonomischen Panel. (RWI-Materialien 97), Essen, 29 S.
-
The effect of nonresponse and measurement error on wage regression across survey modes
Kirchner, Antje & Barbara Felderer (2017): The effect of nonresponse and measurement error on wage regression across survey modes. A validation study. In: P. P. Biemer, E. de Leeuw, S. Eckman, B. Edwards, F. Kreuter, L. E. Lyberg, N. C. Tucker & B. T. West (Hrsg.) (2017): Total survey error in practice, S. 531-556.
-
Public child care and fertility in Germany (im Erscheinen)
Fuchs, Benjamin (2017): Public child care and fertility in Germany (im Erscheinen). In: Journal of Population Economics.
-
The scars of youth
Schmillen, Achim & Matthias Umkehrer (2018): The scars of youth. Effects of early-career unemployment on future unemployment experience. In: International Labour Review, Jg. 156, H. 3/4, S. 465-494. DOI:10.1111/ilr.12079
-
Measuring and controlling for non-consent bias in linked survey and administrative data
Sakshaug, Joseph (2021): Measuring and controlling for non-consent bias in linked survey and administrative data. In: A. Y. Chun, M. D. Larsen, G. Durrant & J. Reiter (Eds.) (2021): Administrative records for survey methodology, Hoboken, Wiley S. 155-178.
-
Why should(n’t) refugees be asked about their possessions? A research-ethical and methodological reflection on my fieldwork in a refugee shelter
Höpfner, Elena (2022): Why should(n’t) refugees be asked about their possessions? A research-ethical and methodological reflection on my fieldwork in a refugee shelter. In: F. Yi-Neumann, A. Lauser, A. Fuhse & P. J. Bräunlein (Hrsg.) (2022): Material Culture and (Forced) Migration, London, UCL Press S. 84-98.
-
Standard and non-standard employment
Gundert, Stefanie & Jens Stegmaier (2019): Standard and non-standard employment. Different jobs, same rights? In: Soziale Welt, Jg. 70, H. 3, S. 304-331. DOI:10.5771/0038-6073-2019-3-304
-
Estimating the Measurement Effects of Mixed Modes in Longitudinal Studies
Cernat, Alexandru & Joseph Sakshaug (2021): Estimating the Measurement Effects of Mixed Modes in Longitudinal Studies. Current Practice and Issues. In: P. Lynn (Ed.) (2021): Advances in Longitudinal Survey Methodology, S. 227-249.
-
Investigating the use of nurse paradata in understanding nonresponse to biological data collection
Pashazadeh, Fiona, Alexandru Cernat & Joseph Sakshaug (2020): Investigating the use of nurse paradata in understanding nonresponse to biological data collection. In: K. Olson, J. D. Smyth, J. Dykema, A. Holbrook, F. Kreuter & B. T. West (Eds.) (2020): Interviewer effects from a total survey error perspective.
-
The Effects of Biological Data Collection in Longitudinal Surveys on Subsequent Wave Nonresponse
Pashazadeh, F., Alexandru Cernat & Joseph Sakshaug (2021): The Effects of Biological Data Collection in Longitudinal Surveys on Subsequent Wave Nonresponse. In: P. Lynn (Ed.) (2021): Advances in Longitudinal Survey Methodology, S. 100-121.
-
Combining Scientific and Non-scientific Surveys to Improve Estimation and Reduce Costs
Sakshaug, Joseph, Arkadiusz Wiśniowski, Diego Perez-Ruiz & Annelies Blom (2021): Combining Scientific and Non-scientific Surveys to Improve Estimation and Reduce Costs. In: T. Rudas & G. Péli (eds.) (2021): Pathways between social science and computational social science, Springer S. 71-93. DOI:10.1007/978-3-030-54936-7_4
-
Wie der mediale Diskurs über Armut von den Betroffenen wahrgenommen wird
Hirseland, Andreas & Stefan Röhrer (2024): Wie der mediale Diskurs über Armut von den Betroffenen wahrgenommen wird. Affektpolitik auf dem Rücken der Armen? In: A. Kerle, F. Kessl & A. Knecht (Hrsg.) (2024): Armutsdiskurse. Perspektiven aus Medien, Politik und Sozialer Arbeit, S. 159-169. DOI:10.14361/9783839471180-012
-
Producing Official Statistics during the COVID-19 Pandemic
Jones, Jacqui, Luisa Ryan, AJ Lanyon, Marie Apostolou, Tanya Price, Corinna König, Marieke Volkert, Joseph Sakshaug, Dane Mead, Helen Baird, Duncan Elliott & Craig H. McLaren (2023): Producing Official Statistics during the COVID-19 Pandemic. In: G. Snijkers, M. Bavdaž, S. Bender, S. MacFeely, J. Sakshaug, K. J. Thompson & A. v. Delden (Hrsg.) (2023): Advances in Business Statistics, Methods and Data Collection, S. 225-264.
-
Labour Mobility in German Establishments during the COVID-19 Crisis: Panel Data Analyses with Special Reference to Short-Time Work and Working from Home
Bellmann, Lisa, Lutz Bellmann & Olaf Hübler (2023): Labour Mobility in German Establishments during the COVID-19 Crisis: Panel Data Analyses with Special Reference to Short-Time Work and Working from Home. (IZA discussion paper / Forschungsinstitut zur Zukunft der Arbeit 15935), Bonn, 23 S.
-
Methods to Estimate Causal Effects
Collischon, Matthias (2022): Methods to Estimate Causal Effects. An Overview on IV, DiD and RDD and a Guide on How to Apply them in Practice. In: Soziale Welt, Jg. 73, H. 4, S. 713 -735. DOI:10.5771/0038-6073-2022-4-713




