Skip to content

COVID-19 drove a mass social experiment in working from home (WFH). We survey more than 30,000 Americans over multiple waves to investigate whether WFH will stick, and why. Our data say that 20 percent of full workdays will be supplied from home after the pandemic ends, compared with just 5 percent before. We develop evidence on five reasons for this large shift: better-than-expected WFH experiences, new investments in physical and human capital that enable WFH, greatly diminished stigma associated with WFH, lingering concerns about crowds and contagion risks, and a pandemic-driven surge in technological innovations that support WFH. We also use our survey data to project three consequences: First, employees will enjoy large benefits from greater remote work, especially those with higher earnings. Second, the shift to WFH will directly reduce spending in major city centers by at least 5-10 percent relative to the pre-pandemic situation. Third, our data on employer plans and the relative productivity of WFH imply a 5 percent productivity boost in the post-pandemic economy due to re-optimized working arrangements. Only one-fifth of this productivity gain will show up in conventional productivity measures, because they do not capture the time savings from less commuting.

We investigate the role of information frictions in the US labor market using a new nationally representative panel dataset on individuals' labor market expectations and realizations. We find that expectations about future job offers are, on average, highly predictive of actual outcomes. Despite their predictive power, however, deviations of ex post realizations from ex ante expectations are often sizable. The panel aspect of the data allows us to study how individuals update their labor market expectations in response to such shocks. We find a strong response: an individual who receives a job offer one dollar above her expectation subsequently adjusts her expectations upward by $0.47. We embed the empirical evidence on expectations and learning into a model of search on- and off- the job with learning, and show that it is far better able to fit the data on reservation wages relative to a model that assumes complete information. We use the framework to gauge the welfare costs of information frictions which arise because individuals make uninformed job acceptance decisions and find that the costs due to information frictions are sizable, but mitigated by the presence of learning.

We use French data over the 1994-2013 period to study how imports of industrial robots affect firm-level outcomes. Guided by a simple model, we develop various empirical strategies to identify the causal effects of robot adoption. Our results suggest that, while demand shocks generate a positive correlation between robot imports and employment at the firm level, exogenous exposure to automation leads to job losses. We also find that robot exposure increases productivity and some evidence that it may increase the relative demand for high-skill professions.