Dr. Marcel Neunhoeffer
Functions at the IAB
Activities
Projects
Publications
-
Continual Release of Differentially Private Synthetic Data from Longitudinal Data Collections
Bun, M., Gaboardi, M., Neunhoeffer, M. & Zhang, W. (2024): Continual Release of Differentially Private Synthetic Data from Longitudinal Data Collections. In: Proceedings of the ACM on Management of Data, Vol. 2, No. 2, p. 1-26. DOI:10.1145/3651595
-
On the Formal Privacy Guarantees of Synthetic Data
Neunhoeffer, M., Latner, J. & Drechsler, J. (2024): On the Formal Privacy Guarantees of Synthetic Data. In: National Bureau of Economic Research (2024): Data Privacy Protection and the Conduct of Applied Research: Methods, Approaches and their Consequences, Spring 2024, Washington, p. 1-16.
-
The Role of Hyperparameters in Machine Learning Models and How to Tune them
Arnold, C., Biedebach, L., Küpfer, A. & Neunhoeffer, M. (2024): The Role of Hyperparameters in Machine Learning Models and How to Tune them. In: Political Science Research and Methods, Vol. 12, No. 4, p. 841-848. DOI:10.1017/psrm.2023.61
-
How to improve the substantive interpretation of regression results when the dependent variable is logged
Rittmann, O., Neunhoeffer, M. & Gschwend, T. (2023): How to improve the substantive interpretation of regression results when the dependent variable is logged. In: Political Science Research and Methods, p. 1-9. DOI:10.1017/psrm.2023.29
-
Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty
Breznau, N., Rinke, E., Wuttke, A., Storz, N., Wolf, C., Ignácz, Z., Winter, F., Hunger, S., Tibajev, A., Hochman, O., Werner, H., Malancu, N., Sonntag, N., Langenkamp, A., Wagemans, F., Hirsch, M., Voicu, B., Maldonado, L., Vogtenhuber, S., Lutscher, P., Hootegem, A., Lersch, P., Noll, J., Kurti Sinatra, D., Linden, M., Kuk, J., Assche, J., Kolb, J., Wiernik, B., Löbel, L., Merhout, F., Burger, K., Otte, G., Damian, E., Nygård, O., Connelly, R., Nüst, D., Eger, M., Neunhoeffer, M., Ellerbrock, S., Moya, C., Burgdorf, K., Schulte-Cloos, J., Bostic, A., Micheli, L., Bohman, A., Prosser, C., Gnambs, T., Merk, S., Heisig, J., Mijs, J., Gummer, T., Mellon, J., Groß, M., Meierrieks, D., Godefroidt, A., Meeusen, C., Gessler, T., McWagner, K., Gavras, K., McManus, P., Forster, A., Mayorga, O., Grömping, M., Mayerl, J., Schumann, S., Steiber, N., Stroppe, A., Schmiedeberg, C., Jungkunz, S., Meyer, D., Stiers, D., Schneider, J., Steiner, N., Raes, L., Staudt, A., Schmidt-Catran, A., Sleegers, W., Schmidt, K., Seuring, J., Schmidt, R., Schunck, R., Schlueter, E., Wehl, N., Schieferdecker, D., Zins, S., Schaeffer, M., Zhang, N., Schachter, A., Huth, N., Sand, G., Hjerm, M., Samuel, R., Brzozowska, Z., Ropers, G., Madia, J., Rogers, J., Kleinert, M., Roets, A., Kołczyńska, M., Ramos, M., Busch, K., Ralston, K., Czymara, C., Schoonvelde, M., Carlos-Castillo, J., Kauff, M., Pechenkina, A., Jungmann, N., Chan, N., Hellmeier, S., Hadjar, A., Edelmann, A., Jacobs, L., Gayle, V., Gaasendam, C., Nguyen, H., Forke, A., Teltemann, J., Adem, M., Stojmenovska, D., Vagni, G., Jaeger, B., Silber, H., Jacobsen, J., Sternberg, S., Bobzien, L., Ziller, C., Blumenberg, J., Hövermann, A., Hunkler, C., Marahrens, H., Mader, M., Blinzler, K., Klinger, J., Biegert, T., Christmann, P., Bethke, F., Bol, T., Berthold, A., Heyne, S., Berning, C., Striessnig, E., Bernauer, J., Martinez, P., Benoit, V., Żółtak, T., Baute, S., Adriaans, J., Baumann, M., Ecker, A., Bauer, P., Gruber, S., Bauer, G., Tung, B., Balzer, D., Yamada, Y., Bahnsen, O., Martin, N., Azevedo, F., Schupp, J., Auer, D., Ochsenfeld, F., Andersen, H., Kunißen, K. & Alvarez-Benjumea, A. (2022): Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty. In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 119, No. 44. DOI:10.1073/pnas.2203150119
-
Private Post-GAN Boosting
Neunhoeffer, M., Wu, Z. & Dwork, C. (2021): Private Post-GAN Boosting. In: ICLR (Hrsg.) (2021): International Conference on Learning Representations 2021, p. 1-19.
-
Ein Ansatz zur Vorhersage der Erststimmenanteile bei Bundestagswahlen
Neunhoeffer, M., Gschwend, T., Munzert, S. & Stoetzer, L. (2020): Ein Ansatz zur Vorhersage der Erststimmenanteile bei Bundestagswahlen. In: Politische Vierteljahresschrift, Vol. 61, No. 1, p. 111-130. DOI:10.1007/s11615-019-00216-3
-
How Cross-Validation Can Go Wrong and What to Do About It
Neunhoeffer, M. & Sternberg, S. (2019): How Cross-Validation Can Go Wrong and What to Do About It. In: Political analysis, Vol. 27, p. 101-106. DOI:10.1017/pan.2018.39
-
Forecasting Elections in Multiparty Systems: A Bayesian Approach Combining Polls and Fundamentals
Stoetzer, L., Neunhoeffer, M., Gschwend, T., Munzert, S. & Sternberg, S. (2019): Forecasting Elections in Multiparty Systems: A Bayesian Approach Combining Polls and Fundamentals. In: Political analysis, Vol. 27, p. 255-262. DOI:10.1017/pan.2018.49
-
Zweitstimme.org. Ein strukturell-dynamisches Vorhersagemodell für Bundestagswahlen
Munzert, S., Stötzer, L., Gschwend, T., Neunhoeffer, M. & Sternberg, S. (2017): Zweitstimme.org. Ein strukturell-dynamisches Vorhersagemodell für Bundestagswahlen. In: Politische Vierteljahresschrift, Vol. 58, No. 3, p. 418-441. DOI:10.5771/0032-3470-2017-3-418