Springe zum Inhalt

Dossier

Digitale Arbeitswelt – Chancen und Herausforderungen für Beschäftigte und Arbeitsmarkt

Der digitale Wandel der Arbeitswelt gilt als eine der großen Herausforderungen für Wirtschaft und Gesellschaft. Wie arbeiten wir in Zukunft? Welche Auswirkungen hat die Digitalisierung und die Nutzung Künstlicher Intelligenz auf Beschäftigung und Arbeitsmarkt? Welche Qualifikationen werden künftig benötigt? Wie verändern sich Tätigkeiten und Berufe? Welche arbeits- und sozialrechtlichen Konsequenzen ergeben sich daraus?
Dieses Themendossier dokumentiert Forschungsergebnisse zum Thema in den verschiedenen Wirtschaftsbereichen und Regionen.
Im Filter „Autorenschaft“ können Sie auf IAB-(Mit-)Autorenschaft eingrenzen.

Zurück zur Übersicht
Ergebnisse pro Seite: 20 | 50 | 100
im Aspekt "Arbeitsplatz- und Beschäftigungseffekte"
  • Literaturhinweis

    New Technology, Older Workers: How Workplace Technology is Associated with Indicators of Job Retention (2025)

    Abrams, Leah ; Harknett, Kristen ; Schneider, Daniel ;

    Zitatform

    Abrams, Leah, Daniel Schneider & Kristen Harknett (2025): New Technology, Older Workers: How Workplace Technology is Associated with Indicators of Job Retention. In: Journal of Aging & Social Policy, S. 1-17. DOI:10.1080/08959420.2025.2523122

    Abstract

    "Middle-aged and older adults who are employed in precarious, high-strain jobs may face challenges to continued work, risking economic insecurity and poor wellbeing in retirement. Technology in the workplace, an under-studied aspect of work environments, could accommodate aging workers or could add stress to their jobs. This study examines how technology in sales and surveillance at work are related to job satisfaction and planned job exits among approximately 6,000 workers aged 50–69 employed in the low-wage service sector (e.g. retail, pharmacy, grocery, hardware, fast food, casual dining, delivery, and hotel). On-the-job surveillance was related to lower job satisfaction and higher reports of looking for a new job, especially when combined with sanctioning for slow speed of work. However, rewards for speed, and to a lesser extent the use of leaderboards, were associated with higher job satisfaction, demonstrating the potential of technology to enhance the work experience for older employees. The use of sales technologies was not associated with job satisfaction or intentions to look for a new job. These results provide a uniquely detailed portrait of prevailing labor market conditions for aging workers in the service sector and demonstrate how certain kinds of technology matter for older workers ’ employment." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Artificial intelligence in work design: unlocking inclusion and overcoming barriers (2025)

    Adolph, Lars; Kirchhoff, Britta Marleen; Hamideh Kerdar, Sara;

    Zitatform

    Adolph, Lars, Britta Marleen Kirchhoff & Sara Hamideh Kerdar (2025): Artificial intelligence in work design: unlocking inclusion and overcoming barriers. In: Zeitschrift für Arbeitswissenschaft, Jg. 79, H. 2, S. 197-205. DOI:10.1007/s41449-025-00467-4

    Abstract

    "This article examines the protection goal of “exclusion prevention” and the design requirement of “design for inclusion and accessibility”, which are part of the initial considerations for a roadmap on artificial intelligence (AI) in occupational science research. The proposed roadmap systematically breaks down framework conditions, design requirements, instrumental goals and protection goals. The concept presented provides guidance for future research and can also serve as a basis for scientific policy advice. The in-depth examination of inclusion and AI takes place against the background that, on the one hand these aspects are underrepresented in occupational science research, and technological development can lead to a surge of change, particularly in the area of inclusive work design, on the other. Two expert workshops were held to answer the research question of what opportunities and risks AI technologies offer for the professional integration of people with disabilities, and what research and development needs to exist. The results show that some useful systems already exist, but that they can also have negative effects and that there is a need for further development. Practical relevance: The presented aspects of the roadmap on artificial intelligence (AI) from the perspective of occupational science research is relevant for both companies and policy actors who want to gain a systematic overview of AI in the world of work. A particular focus is on the issue of inclusive work design. In an expert workshop, it became clear that an optimistic view of the use of artificial intelligence for inclusive work design prevails both in companies or workshops employing people with disabilities and in the field of consulting. At the same time, however, development needs and potential risks were identified. The results provide an overview of the current potential uses of AI and are also of interest to companies that do not yet employ people with disabilities but are planning to do so." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Zentrale Befunde zu aktuellen Arbeitsmarktthemen 2025 (2025)

    Anger, Silke ; Wolter, Stefanie ; Lietzmann, Torsten ; Lehmer, Florian ; Jahn, Elke; Leber, Ute; Wolff, Joachim; Artmann, Elisabeth; Wenzig, Claudia; Lang, Julia ; Wanger, Susanne ; Kuhn, Sarah; Vom Berge, Philipp ; Kubis, Alexander; Walwei, Ulrich ; Trenkle, Simon ; Braun, Wolfgang; Brücker, Herbert ; Stops, Michael ; Kosyakova, Yuliya ; Stepanok, Ignat ; Janssen, Simon; Roth, Duncan ; Janser, Markus ; Rauch, Angela ; Jahn, Elke J. ; Popp, Martin ; Hohmeyer, Katrin ; Müller, Dana ; Hohendanner, Christian ; Mense, Andreas ; Hiesinger, Karolin ; Zika, Gerd ; Heß, Pascal ; Weber, Enzo ; Hellwagner, Timon ; Bruckmeier, Kerstin ; Haas, Anette; Seibert, Holger; Gürtzgen, Nicole ; Ramos Lobato, Philipp; Gläser, Nina; Müller, Christoph ; Gherbaoui, Samia; Arntz, Melanie ; Gellermann, Jan; Stephan, Gesine ; Fitzenberger, Bernd ; Oberfichtner, Michael ; Dietz, Martin; Bächmann, Ann-Christin ; Dauth, Wolfgang ; Matthes, Britta ; Collischon, Matthias ; Reims, Nancy ; Christoph, Bernhard ;

    Zitatform

    Anger, Silke, Melanie Arntz, Elisabeth Artmann, Ann-Christin Bächmann, Wolfgang Braun, Kerstin Bruckmeier, Herbert Brücker, Bernhard Christoph, Matthias Collischon, Wolfgang Dauth, Martin Dietz, Bernd Fitzenberger, Jan Gellermann, Samia Gherbaoui, Nina Gläser, Nicole Gürtzgen, Anette Haas, Timon Hellwagner, Pascal Heß, Karolin Hiesinger, Christian Hohendanner, Katrin Hohmeyer, Elke J. Jahn, Markus Janser, Simon Janssen, Stefanie Wolter, Torsten Lietzmann, Florian Lehmer, Ute Leber, Joachim Wolff, Claudia Wenzig, Julia Lang, Susanne Wanger, Sarah Kuhn, Philipp Vom Berge, Alexander Kubis, Ulrich Walwei, Simon Trenkle, Michael Stops, Yuliya Kosyakova, Ignat Stepanok, Duncan Roth, Angela Rauch, Martin Popp, Dana Müller, Andreas Mense, Gerd Zika, Enzo Weber, Holger Seibert, Philipp Ramos Lobato, Christoph Müller, Gesine Stephan, Michael Oberfichtner, Britta Matthes & Nancy Reims (2025): Zentrale Befunde zu aktuellen Arbeitsmarktthemen 2025. Nürnberg, 21 S. DOI:10.48720/IAB.GP.2505.1

    Abstract

    "Digitalisierung und Künstliche Intelligenz, Dekarbonisierung und demografischer Wandel werden den Arbeitsmarkt in den kommenden Jahren erheblich verändern. Gleichzeitig wird eine Deindustrialisierung Deutschlands befürchtet. Handlungsbedarf besteht beispielsweise bei der Sicherung des Arbeitskräftebedarfs – und damit verbunden bei den Themen Aus- und Weiterbildung –, bei der Reduzierung der Arbeitslosigkeit und insbesondere der Langzeitarbeitslosigkeit sowie bei der sozialen Absicherung von Solo-Selbständigen Zu all diesen und zahlreichen weiteren wichtigen Themen fasst die IAB-Broschüre „Zentrale Befunde zu aktuellen Arbeitsmarkt-Themen 2025“ die zentralen wissenschaftlichen Befunde kompakt zusammen. Sie bietet zudem Handlungsempfehlungen für die Arbeitsmarktpolitik, die aus den wissenschaftlichen Befunden abgeleitet wurden." (Autorenreferat, IAB-Doku)

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Computers as Stepping Stones? Technological Change and Equality of Labor Market Opportunities (2025)

    Arntz, Melanie ; Lipowski, Cäcilia ; Neidhöfer, Guido ; Zierahn-Weilage, Ulrich ;

    Zitatform

    Arntz, Melanie, Cäcilia Lipowski, Guido Neidhöfer & Ulrich Zierahn-Weilage (2025): Computers as Stepping Stones? Technological Change and Equality of Labor Market Opportunities. In: Journal of labor economics, Jg. 43, H. 2, S. 503-543., 2023-08-18. DOI:10.1086/727490

    Abstract

    "This paper analyzes whether technological change improves equality of labor market opportunities by increasing the returns to skills relative to the returns to parental background. We find that in Germany during the 1990s, the introduction of computer technologies improved the access to technology-adopting occupations for workers with low-educated parents, and reduced their wage penalty within these occupations. We also show that this significantly contributed to a decline in the overall wage penalty experienced by workers from disadvantaged parental back-grounds over this time period. Competing mechanisms, such as skill-specific labor supply shocks and skill-upgrading, do not explain these findings." (Author's abstract, IAB-Doku) ((en))

    Beteiligte aus dem IAB

    Arntz, Melanie ;
    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Digitalisierung und Wandel der Beschäftigung (DiWaBe 2.0): Eine Datengrundlage für die Erforschung von Künstlicher Intelligenz und anderer Technologien in der Arbeitswelt (2025)

    Arntz, Melanie ; Baum, Myriam; Wischniewski, Sascha ; Matthes, Britta ; Meyer, Sophie-Charlotte; Hartwig, Matthias; Schlenker, Oliver; Dorau, Ralf; Brüll, Eduard ; Lehmer, Florian ; Tisch, Anita ;

    Zitatform

    Arntz, Melanie, Myriam Baum, Eduard Brüll, Ralf Dorau, Matthias Hartwig, Florian Lehmer, Britta Matthes, Sophie-Charlotte Meyer, Oliver Schlenker, Anita Tisch & Sascha Wischniewski (2025): Digitalisierung und Wandel der Beschäftigung (DiWaBe 2.0): Eine Datengrundlage für die Erforschung von Künstlicher Intelligenz und anderer Technologien in der Arbeitswelt. (baua: Bericht), Dortmund, 48 S. DOI:10.21934/baua:bericht20250225

    Abstract

    "In Deutschland nutzt bereits mehr als die Hälfte der Beschäftigten Künstliche Intelligenz (KI) am Arbeitsplatz - überwiegend jedoch informell. Dies deutet darauf hin, dass viele Beschäftigte KI als hilfreiche Unterstützung wahrnehmen, zugleich aber die formelle Einführung seitens der Betriebe den Erwartungen der Beschäftigten hinterherhinkt. Der vorliegende Bericht präsentiert die Ergebnisse der DiWaBe 2.0-Befragung, einer repräsentativen Querschnittserhebung von rund 9.800 sozialversicherungspflichtig Beschäftigten in Deutschland, die im Jahr 2024 durchgeführt wurde. Ziel der Befragung ist es, eine Datengrundlage zu schaffen, um die Auswirkungen des technologischen Wandels - und insbesondere von KI - auf die Arbeitswelt abzuschätzen. Im Fokus stehen dabei vor allem Veränderungen von Tätigkeiten und Anforderungen am Arbeitsplatz, Arbeitsbedingungen und -organisation, Weiterbildungsaktivitäten sowie die Gesundheit der Beschäftigten. Die Ergebnisse zeigen, dass die Nutzung von KI stark von individuellen und beruflichen Faktoren wie Berufssegment, Bildung, Alter und Geschlecht abhängt. So nutzt nur knapp ein Drittel der Beschäftigten ohne Bildungsabschluss KI, während dieser Anteil bei Beschäftigten mit Hochschul-, Meister-oder Technikerabschluss fast 80 % beträgt. Erste multivariate Analysen zeigen, dass Beschäftigte, die ihre KI-Nutzung in den letzten fünf Jahren intensiviert haben, von komplexeren Tätigkeitsanforderungen berichten, insbesondere in den Bereichen Schreiben, Programmierung und Mathematik. Zudem ist eine intensivierte KI-Nutzung mit einer höheren Arbeitsautonomie, aber auch mit einer höheren Arbeitsintensität verbunden. Es zeigt sich jedoch kein statistisch signifikanter Zusammenhang zwischen der Nutzung von KI und der Gesundheit der Beschäftigten. Zudem unterscheiden sich Beschäftigte mit KI-Nutzung nicht von Nichtnutzenden hinsichtlich ihrer Teilnahme an Weiterbildung." (Autorenreferat, IAB-Doku)

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    The Impact of Aging and AI on Japan's Labor Market: Challenges and Opportunities (2025)

    Asao, Kohei; Seitani, Haruki; Stepanyan, Ara; Xu, TengTeng;

    Zitatform

    Asao, Kohei, Haruki Seitani, Ara Stepanyan & TengTeng Xu (2025): The Impact of Aging and AI on Japan's Labor Market: Challenges and Opportunities. (IMF working papers / International Monetary Fund 2025,184), Washington, DC, 17 S.

    Abstract

    "This paper explores the complex roles of demographic changes and technological innovation in shaping Japan's labor market. We use regression analysis to assess the impact of population aging on labor productivity and shortages. Our findings indicate that the aging workforce contributes to labor shortages and potentially weighs on labor productivity. We also investigate occupational level data to identify the complementarity and substitutability of AI in occupational tasks as well as skill transferability. Our research reveals that Japanese workers face lower exposure to AI compared to their counterparts in other advanced economies, thereby constraining AI's potential to mitigate labor shortages. Furthermore, the disparities in skill requirements across occupations with different AI exposures highlight the importance of facilitating labor mobility from displaced jobs to those in demand." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Notes on a World with Generative AI (2025)

    Askitas, Nikolaos;

    Zitatform

    Askitas, Nikolaos (2025): Notes on a World with Generative AI. (CESifo working paper 12070), München, 27 S.

    Abstract

    "Generative AI (GenAI) and Large Language Models (LLMs) are moving into domains once seen as uniquely human—reasoning, synthesis, abstraction, and rhetoric. Addressed to labor economists and informed readers, this paper clarifies what is truly new about LLMs, what is not, and why it matters. Using an analogy to autoregressive models from economics, we explain their stochastic nature, whose fluency is often mistaken for agency. We situate LLMs in the longer history of human–machine outsourcing, from digestion to cognition, and examine disruptive effects on white-collar labor, institutions, and epistemic norms. Risks emerge when synthetic content becomes both product and input, creating feedback loops that erode originality and reliability. Grounding the discussion in conceptual clarity over hype, we argue that while GenAI may substitute for some labor, statistical limits will preserve a key role for human judgment. The question is not only how these tools are used, but which tasks we relinquish and how we reallocate expertise in a new division of cognitive labor." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    On automation, labor reallocation and welfare (2025)

    Auray, Stéphane; Eyquem, Aurélien ;

    Zitatform

    Auray, Stéphane & Aurélien Eyquem (2025): On automation, labor reallocation and welfare. In: Journal of Economic Dynamics and Control, Jg. 177. DOI:10.1016/j.jedc.2025.105129

    Abstract

    "We develop an open-economy model of endogenous automation with heterogeneous firms and labor-market reallocation to quantify the contribution of various trends to the adoption of robots in the U.S. economy. The decline in the relative price of robots is the major trend leading to automation, but interacts with other trends that either hinder (rising entry costs, rising markups) or slightly foster (rising labor productivity, declining trade costs) the adoption of robots. Taken alone, the decline in the relative price of robots produces moderate welfare gains in the long run, but less than labor productivity growth. We then exploit our model to show that a decline in the relative price of robots (i) generates small positive cross-country automation spillovers and (ii) produces inefficient labor-market reallocation since a small subsidy on robots combined with a training subsidy can generate small welfare gains. Our main conclusion is that automation can not be simply modeled as an exogenous decline in the price of robots, and must be analyzed in a broader framework taking into account trends affecting firms, such as the decline in business dynamism and the rise in markups." (Author's abstract, IAB-Doku, © 2025 The Author(s). Published by Elsevier B.V.) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Expertise (2025)

    Autor, David; Thompson, Neil;

    Zitatform

    Autor, David & Neil Thompson (2025): Expertise. In: Journal of the European Economic Association, Jg. 23, H. 4, S. 1203-1271. DOI:10.1093/jeea/jvaf023

    Abstract

    "When job tasks are automated, does this augment or diminish the value of labor in the tasks that remain? We argue the answer depends on whether removing tasks raises or reduces the expertise required for remaining non-automated tasks. Since the same task may be relatively expert in one occupation and inexpert in another, automation can simultaneously replace experts in some occupations while augmenting expertise in others. We propose a conceptual model of occupational task bundling that predicts that changing occupational expertise requirements have countervailing wage and employment effects: automation that decreases expertise requirements reduces wages but permits the entry of less expert workers; automation that raises requirements raises wages but reduces the set of qualified workers. We develop a novel, content-agnostic method for measuring job task expertise, and we use it to quantify changes in occupational expertise demands over four decades attributable to job task removal and addition. We document that automation has raised wages and reduced employment in occupations where it eliminated inexpert tasks, but lowered wages and increased employment in occupations where it eliminated expert tasks. These effects are distinct from—and in the case of employment,opposite to—the effects of changing task quantities. The expertise framework resolves the puzzle of why routine task automation has lowered employment but often raised wages in routine task-intensive occupations. It provides a general tool for analyzing how task automation and new task creation reshape the scarcity value of human expertise within and across occupations." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Systematic literature review on the digital transformation of the personnel selection process (2025)

    Baranyi, Virág ;

    Zitatform

    Baranyi, Virág (2025): Systematic literature review on the digital transformation of the personnel selection process. In: German Journal of Human Resource Management, S. 1-32. DOI:10.1177/23970022251363012

    Abstract

    "Digital Transformation technologies (DT technologies) are reshaping work processes, including personnel selection, an area traditionally viewed as inherently human-centric. While prior studies have examined various digital technologies in personnel selection, they have not provided sufficient evidence on the different levels of digitalization in selection processes and the factors influencing organizations’ adoption decisions. To address these gaps, this study systematically reviews 94 Scopus-indexed studies to analyze how DT technologies are applied across selection stages, categorizing practices into Manual, Digitalized, and Digitally Transformed approaches. By further distinguishing between Digital Technologies and AI Enhancements, this study offers a structured framework for understanding how organizations integrate digital technologies into selection and what drives or hinders their adoption. The findings highlight both the benefits (efficiency gains, potential bias reduction, improved candidate experience) and challenges (ethical concerns, algorithmic bias, technical and cultural barriers, and candidate perceptions) associated with these technologies, providing insights for both academic research and HR practice." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Winners and losers when firms robotize: wage effects across occupations and education (2025)

    Barth, Erling ; Umblijs, Janis ; Schøne, Pål ; Røed, Marianne;

    Zitatform

    Barth, Erling, Marianne Røed, Pål Schøne & Janis Umblijs (2025): Winners and losers when firms robotize: wage effects across occupations and education. In: The Scandinavian Journal of Economics, S. 1-30. DOI:10.1111/sjoe.12593

    Abstract

    "This paper analyses the impact of robots on workers' wages in the manufacturing sector, with a particular focus on relative wages for workers with different levels of education and in different occupations. Using high-quality matched employer–employee register data with firm-level information on the introduction of industrial robots, we identify the effects of robotization on relative wages within firms. Skilled blue-collar workers with a vocational degree experience a decline in wages when firms introduce robots, while there are only small effects for the other groups of workers. These results suggest that robots are substitutes for tasks undertaken by skilled blue-collar workers in manufacturing, and furthermore that the adoption of robots contributes to a polarization of the labor market and a hollowing out of the wage distribution, rather than to skill-biased technical change." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Robotic capital - skill complementarity (2025)

    Battisti, Michele ; Gravina, Antonio Francesco ; Parmeter, Christopher F.; Del Gatto, Massimo;

    Zitatform

    Battisti, Michele, Massimo Del Gatto, Antonio Francesco Gravina & Christopher F. Parmeter (2025): Robotic capital - skill complementarity. In: Macroeconomic Dynamics, Jg. 29, S. e54. DOI:10.1017/s1365100524000567

    Abstract

    "Relying upon an original (country-sector-year) measure of robotic capital (RK), we investigate the degree of complementarity/substitutability between robots and workers at different skill levels. We employ nonparametric methods to estimate elasticity of substitution patterns between RK and skilled/unskilled labor over the period 1995–2009. We show that: i) on average, RK exhibits less substitutability with skilled workers compared to unskilled workers, indicating a phenomenon of “RK-Skill complementarity”. This pattern holds in a global context characterized by significant heterogeneity; ii) the dynamic of “RK-Skill complementarity” has increased since the early 2000s; iii) the observed strengthening is more prominent in OECD countries, as opposed to non-OECD countries, and in the Manufacturing sector, compared to non-Manufacturing industries." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Ethical Integration in Public Sector AI. The Case of Algorithmic Systems in the Public Employment Service in Germany (2025)

    Bauer, Bernhard ; Ziethmann, Paula Franziska ; Mühlbauer, Sabrina; Weber, Enzo ; Schlögl-Flierl, Kerstin ;

    Zitatform

    Bauer, Bernhard, Sabrina Mühlbauer, Kerstin Schlögl-Flierl, Enzo Weber & Paula Franziska Ziethmann (2025): Ethical Integration in Public Sector AI. The Case of Algorithmic Systems in the Public Employment Service in Germany. (IAB-Discussion Paper 12/2025), Nürnberg, 32 S. DOI:10.48720/IAB.DP.2512

    Abstract

    "Dieser Artikel befasst sich mit der ethischen Gestaltung von Künstlicher Intelligenz (KI) im öffentlichen Sektor, wobei der Fokus auf den öffentlichen Arbeitsverwaltungen liegt. Während KI zunehmend zur effizienteren Gestaltung von Verwaltungsprozessen und zur Verbesserung der Dienstleistungserbringung eingesetzt wird, wirft ihre Anwendung in der Arbeitsvermittlung grundlegende Fragen hinsichtlich Fairness, Rechenschaftspflicht und demokratischer Legitimität auf. Das EU-Gesetz zur Künstlichen Intelligenz (EU AI Act) unterstreicht die Dringlichkeit der Bewältigung dieser Herausforderungen, indem es KI-Systeme, die die Arbeitsvermittlung betreffen, als risikoreich einstuft und damit strenge Schutzmaßnahmen vorschreibt, um Diskriminierung zu verhindern und Transparenz zu gewährleisten. Das zentrale Ziel dieser Studie ist es zu untersuchen, wie ethische und soziale Überlegungen systematisch in die Entwicklung und Umsetzung von KI im öffentlichen Sektor eingebunden werden können. Anhand der deutschen öffentlichen Arbeitsverwaltung als Fallstudie stellen wir den Ansatz „Embedded Ethics and Social Sciences” (EE) vor. Dieser Ansatz integriert ethische Überlegungen und den Bezug zur Praxis bereits in die Entwicklung des Modells. Qualitative Erkenntnisse aus Interviews mit Vermittlungsfachkräften verdeutlichen die soziotechnischen Herausforderungen der Umsetzung, insbesondere die Notwendigkeit, Effizienz mit dem Vertrauen der Bürger:innen in Einklang zu bringen. Auf der Grundlage dieser Erkenntnisse geben wir Empfehlungen für die Gestaltung von KI-Systemen, welche sich aus der Integration ethischer und sozialer Überlegungen in die Systementwicklung ergeben. In diesem Zusammenhang diskutieren wir Fragen der Datenethik und Bias, der Fairness und der Rolle erklärbarer KI (XAI). Unsere Analyse zeigt, dass der EE-Ansatz nicht nur die Einhaltung neuer regulatorischer Anforderungen unterstützt, sondern auch die menschliche Aufsicht, die Handlungsfähigkeit und gemeinsame Entscheidungsfindung stärken kann. So deuten die Ergebnisse darauf hin, dass ein ethisch fundiertes Design Fairness, Transparenz und Legitimität in verschiedenen Bereichen der öffentlichen Verwaltung erhöhen kann und somit zu einer verantwortungsvolleren und bürgernahen Umsetzung im digitalen Zeitalter beiträgt." (Autorenreferat, IAB-Doku)

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    The dynamics of automation adoption: Firm-level heterogeneity and aggregate employment effects (2025)

    Bisio, Laura ; Grazzi, Marco ; Cuzzola, Angelo ; Moschella, Daniele ;

    Zitatform

    Bisio, Laura, Angelo Cuzzola, Marco Grazzi & Daniele Moschella (2025): The dynamics of automation adoption: Firm-level heterogeneity and aggregate employment effects. In: European Economic Review, Jg. 173. DOI:10.1016/j.euroecorev.2024.104943

    Abstract

    "We investigate the impact of investment in automation-related goods on adopting and non-adopting firms in the Italian economy during 2011–2019. We integrate datasets on trade activities, firms’, and workers’ characteristics for the population of Italian importing firms and estimate the effects on adopters ’ outcomes within a difference-in-differences design exploiting import lumpiness in product categories linked to automation technologies (including robots). We find a positive average adoption effect on the adopters’ employment: firms are, on average, around 3% larger in terms of employment after an automation spike. Crucially, the employment effect is heterogeneous across firms: a positive effect is predominant among small firms, which are around 5% larger five years after the spike; on the contrary, a negative displacement effect is predominant among medium and large firms, with an employment contraction at five years of around -4%. This result can shed light on one potential reason behind the mixed results in the literature, i.e. different size distribution of the samples used. We complete the framework with a 5-digit sector-level analysis showing that adopting automation technologies has an overall weak negative effect on aggregate employment, and with an analysis of the competition effects of automation, showing that non-adopters suffer a loss in sales and employment." (Author's abstract, IAB-Doku, © 2025 The Authors. Published by Elsevier B.V.) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Re‐Skilling in the Age of Skill Shortage: Adult Education Rather Than Active Labor Market Policy (2025)

    Bonoli, Giuliano ; Felder-Stindt, Alina; Emmenegger, Patrick ;

    Zitatform

    Bonoli, Giuliano, Patrick Emmenegger & Alina Felder-Stindt (2025): Re‐Skilling in the Age of Skill Shortage: Adult Education Rather Than Active Labor Market Policy. In: Regulation and governance, S. 1-13. DOI:10.1111/rego.70065

    Abstract

    "European economies face the task of providing the necessary skills for the “twin transition ” in a period of skill shortage. As a result, we may expect countries to reorient their labor market policy towards re-skilling. We look for evidence of a reorientation in two relevant policy fields: active labor market policy (ALMP) and adult education (AE). We explore general trends in both fields based on quantitative indicators and compare recent policy developments in four countries with strong ALMP and AE sectors: Denmark, France, Germany, and Sweden. We do not observe clear evidence of a general movement away from activation and towards re-skilling in ALMP. However, in AE, we identify several re-skilling initiatives that address skill shortages. Relying on insights from queuing theories of hiring and training, we argue that due to changes in the population targeted by ALMP, the locus of re-skilling policy is increasingly moving towards AE." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Canaries in the Coal Mine? Six Facts about the Recent Employment Effects of Artificial Intelligence (2025)

    Brynjolfsson, Erik ; Chen, Ruyu; Chandar, Bharat;

    Zitatform

    Brynjolfsson, Erik, Bharat Chandar & Ruyu Chen (2025): Canaries in the Coal Mine? Six Facts about the Recent Employment Effects of Artificial Intelligence. (Working Papers / Stanford Digital Economy Lab), Stanford, 57 S.

    Abstract

    "This paper examines changes in the labor market for occupations exposed to generative artificial intelligence using high-frequency administrative data from the largest payroll software provider in the United States. We present six facts that characterize these shifts. We find that since the widespread adoption of generative AI, early-career workers (ages 22-25) in the most AI-exposed occupations have experienced a 13 percent relative decline in employment even after controlling for firm-level shocks. In contrast, employment for workers in less exposed fields and more experienced workers in the same occupations has remained stable or continued to grow. We also find that adjustments occur primarily through employment rather than compensation. Furthermore, employment declines are concentrated in occupations where AI is more likely to automate, rather than augment, human labor. Our results are robust to alternative explanations, such as excluding technology-related firms and excluding occupations amenable to remote work. These six facts provide early, large-scale evidence consistent with the hypothesis that the AI revolution is beginning to have a significant and disproportionate impact on entry-level workers in the American labor market." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Automation and segmentation: Downgrading employment quality among the former “insiders” of Western European labour markets (2025)

    Buzzelli, Gregorio ;

    Zitatform

    Buzzelli, Gregorio (2025): Automation and segmentation: Downgrading employment quality among the former “insiders” of Western European labour markets. In: International Journal of Social Welfare, Jg. 34, H. 2. DOI:10.1111/ijsw.70011

    Abstract

    "The literature on labor market segmentation traditionally looks at servitisation as the main structural driver behind the rise of employment precariousness, overlooking another crucial engine of the knowledge-economy transition: the Information and Communication Technologies (ICT) revolution. This paper proposes a task-based approach to complement the skill-biased framework usually applied to labor market segmentation, investigating the correlation between occupational exposure to the risk of automation and low-quality employment. The empirical analysis, based on 14 countries sampled from ESS (2002–2018), shows a strong correlation between technological replaceability and low income across all of Western Europe, especially after the Great Recession, while its association with atypical employment is mainly driven by fixed-term contracts in Central and Southern Europe and by part-time arrangements in Anglo-Saxon and Scandinavian countries. Overall, a “recalibrated” dualisation emerges in Western European labor markets, characterized by the diffusion of low labor earnings and atypical contracts among mid-skill routine workers, besides the low-skill service precariat." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    KI-Jobs in Deutschland: Stagnation statt Boom: Eine Analyse von Online-Stellenanzeigen (2025)

    Büchel, Jan; Engler, Jan Felix; Mertens, Armin;

    Zitatform

    Büchel, Jan, Jan Felix Engler & Armin Mertens (2025): KI-Jobs in Deutschland: Stagnation statt Boom. Eine Analyse von Online-Stellenanzeigen. 22 S. DOI:10.11586/2025025

    Abstract

    "Künstliche Intelligenz (KI) ist eine zentrale Zukunftstechnologie, die mehr Effizienz und Produktivität in Unternehmen ermöglichen kann. Vor dem Hintergrund der angespannten wirtschaftlichen Lage Deutschlands und dem vorliegenden demografiebedingten Fachkräftemangel sollten Unternehmen das Potenzial von KI nutzen, um ihre Wettbewerbsfähigkeit zu stärken. Positiv ist, dass im Jahr 2024 etwa jedes fünfte Unternehmen in Deutschland angibt, KI bereits zu nutzen. Der KI-Einsatz benötigt dabei neue Kompetenzen, beispielsweise wenn Unternehmen KI-Lösungen selbst entwickeln möchten. Auch wenn zugekaufte KI-Lösungen im Unternehmen angewendet werden, entstehen Kompetenzbedarfe. Um die Bedarfe der Unternehmen zu erfassen, hat das Institut der deutschen Wirtschaft im Auftrag der Bertelsmann Stiftung Online-Stellenanzeigen mit Bezug zu KI aus den Jahren 2019 bis 2024 analysiert." (Autorenreferat, IAB-Doku)

    Weiterführende Informationen

    Zusammenfassung der Studie
    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Why hours worked decline less after technology shocks? (2025)

    Cardi, Olivier ; Restout, Romain;

    Zitatform

    Cardi, Olivier & Romain Restout (2025): Why hours worked decline less after technology shocks? In: Journal of International Economics, Jg. 157. DOI:10.1016/j.jinteco.2025.104095

    Abstract

    "The contractionary effect of technology shocks on hours gradually vanishes over time in OECD countries. To rationalize the decline in hours and its disappearance, we use a VAR-based decomposition of technology shocks into symmetric and asymmetric technology improvements. While hours decline dramatically when technology improves at the same rate across sectors, hours significantly increase when technology improvements occur at different rates. Because they are primarily driven by symmetric technology improvements, permanent technology shocks drive down total hours. Such a decline progressively vanishes due to the growing importance of asymmetric technology shocks. To reach these two conclusions, we simulate a two-sector model which can reproduce the contractionary effect on hours once the economy is internationally open and we allow for production factors’ mobility costs, factor-biased technological change, and home bias. To account for the vanishing decline in hours, we have to let the share of asymmetric technology shocks increase over time." (Author's abstract, IAB-Doku, © 2025 The Authors. Published by Elsevier B.V.) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Equalising the effects of automation? The role of task overlap for job finding (2025)

    Dabed, Diego ; Rademakers, Emilie ; Genz, Sabrina ;

    Zitatform

    Dabed, Diego, Sabrina Genz & Emilie Rademakers (2025): Equalising the effects of automation? The role of task overlap for job finding. In: Labour Economics, Jg. 96. DOI:10.1016/j.labeco.2025.102766

    Abstract

    "This paper investigates whether task overlap can equalise the distributional effects of automation for unemployed job seekers displaced from routine jobs. Using a language model, we establish a novel job-to-job task similarity measure. Exploiting the resulting job network to define job markets flexibly, we find that only the most similar jobs affect job finding. Since automation-exposed jobs overlap with other highly exposed jobs, task-based reallocation provides little relief for affected job seekers. We show that this is not true for more recent software exposure, for which task overlap lowers the inequality in job finding." (Author's abstract, IAB-Doku, © 2025 The Authors. Published byElsevier B.V.) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Using Google search data to examine factory automation and its effect on employment (2025)

    Diebold, Céline ;

    Zitatform

    Diebold, Céline (2025): Using Google search data to examine factory automation and its effect on employment. In: Economic analysis and policy, Jg. 86, S. 1301-1328. DOI:10.1016/j.eap.2025.03.042

    Abstract

    "This paper revisits the link between robot adoption and employment across more than 100 European regions over a period of five years. A simple model is provided arguing that interest in robots precedes the actual deployment of robots. Thus, a novel instrument is introduced: interest in automation revealed by Google searches. This allows for a tentatively causal interpretation of the results. A small, yet significant positive aggregate effect is identified, along with heterogeneous effects across sex and educational attainment. The local effect on aggregate employment tends to be roughly twice as large as the spillover effect on neighbouring regions." (Author's abstract, IAB-Doku, © 2025 The Author(s). Published by Elsevier B.V. on behalf of The Economic Society of Australia (Queensland) Inc.) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Macroeconomic and Labor Market Drivers of AI Adoption in Europe: A Machine Learning and Panel Data Approach (2025)

    Drago, Carlo ; Costantiello, Alberto ; Leogrande, Angelo ; Savorgnan, Marco;

    Zitatform

    Drago, Carlo, Alberto Costantiello, Marco Savorgnan & Angelo Leogrande (2025): Macroeconomic and Labor Market Drivers of AI Adoption in Europe: A Machine Learning and Panel Data Approach. In: Economies, Jg. 13, H. 8. DOI:10.3390/economies13080226

    Abstract

    "This article investigates the macroeconomic and labor market conditions that shape the adoption of artificial intelligence (AI) technologies among large firms in Europe. Based on panel data econometrics and supervised machine learning techniques, we estimate how public health spending, access to credit, export activity, gross capital formation, inflation, openness to trade, and labor market structure influence the share of firms that adopt at least one AI technology. The research covers all 28 EU members between 2018 and 2023. We employ a set of robustness checks using a combination of fixed-effects, random-effects, and dynamic panel data specifications supported by Clustering and supervised learning techniques. We find that AI adoption is linked to higher GDP per capita, healthcare spending, inflation, and openness to trade but lower levels of credit, exports, and capital formation. Labor markets with higher proportions of salaried work, service occupations, and self-employment are linked to AI diffusion, while unemployment and vulnerable work are detractors. Cluster analysis identifies groups of EU members with similar adoption patterns that are usually underpinned by stronger economic and institutional fundamentals. The results collectively suggest that AI diffusion is shaped not only by technological preparedness and capabilities to invest but by inclusive macroeconomic conditions and equitable labor institutions. Targeted policy measures can accelerate the equitable adoption of AI technologies within the European industrial economy." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Artificial intelligence and labor market outcomes: AI has created new jobs to meet digital and automation needs, and those equipped with AI capital enjoy increased employment and wages (2025)

    Drydakis, Nick ;

    Zitatform

    Drydakis, Nick (2025): Artificial intelligence and labor market outcomes. AI has created new jobs to meet digital and automation needs, and those equipped with AI capital enjoy increased employment and wages. (IZA world of labor 514), Bonn, o. S. DOI:10.15185/izawol.514

    Abstract

    "AI is reshaping the labor market by creating new jobs and increasing competition for high-skilled roles, benefiting those with AI capital. While AI may boost productivity in certain jobs, it also widens the gap between high- and low-skilled employees. Less-educated employees face higher risks of displacement and reduced income. Additionally, AI introduces challenges related to workforce adaptability, trust, ethics, and transparency, which negatively impact employees' job realities. Policymakers should navigate these changes to maximize the benefits of AI while mitigating its adverse effects." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Narrowing the digital divide: Economic and social convergence in Europe’s digital transformation (2025)

    Duff, Cían; Soldi, Rossella; Hyland, Marie; Cavallini, Simona; Peruffo, Eleonora; Krieg, Marielena;

    Zitatform

    Duff, Cían, Marie Hyland, Marielena Krieg, Eleonora Peruffo, Simona Cavallini & Rossella Soldi (2025): Narrowing the digital divide. Economic and social convergence in Europe’s digital transformation. (Eurofound research report / European Foundation for the Improvement of Living and Working Conditions), Dublin, 822 S. DOI:10.2806/1764165

    Abstract

    "Digitalization has been on the EU policy agenda since 2000. While great strides have been made in this area over the past two decades, the digital transformation is not yet complete. This report seeks to deepen our understanding of the evolution towards a digital Europe. By applying the lens of convergence, the report assesses the progress of Member States towards the EU ’s policy targets, where Member States are growing together and wheredigital gaps are expanding. It also considers the gaps in the progress of digitalization between socioeconomic groups and regions. According to almost all indicators analysed, historically lower-performing Member States have been catching up with the digital leaders. However, at a more granular level, digitalization of businesses has been uneven and significant inequalities persist between regions and socioeconomic groups. The report shines a light on the role of digitalization in the EU’s economic convergence and considers the progress in and benefits of digitalisation for the private sector. The findings show that access is still an issue for vulnerable groups, in particular low-income households, older individuals and those with lower levels of education. Importantly, these are the groups that are more reliant on public services, and they may struggle to access e-government. While progress is being made, some groups remain at risk of being left behind in the digital transition. Considering this, the report highlights a range of policy approaches being deployed across Europe that aim to narrow the digital divide." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Industrial robots and employment change in manufacturing: A decomposition analysis (2025)

    Eder, Andreas ; Mahlberg, Bernhard ; Koller, Wolfgang ;

    Zitatform

    Eder, Andreas, Wolfgang Koller & Bernhard Mahlberg (2025): Industrial robots and employment change in manufacturing: A decomposition analysis. In: Structural Change and Economic Dynamics, Jg. 74, S. 591-602. DOI:10.1016/j.strueco.2025.05.014

    Abstract

    "This paper examines the contribution of industrial robots to employment change in manufacturing in a sample of 17 European countries and the USA over the period 2004 to 2019. We combine index decomposition analysis (IDA) and production-theoretical decomposition analysis (PDA). First, we use IDA to decompose employment change in the manufacturing industry into changes in (aggregate) manufacturing output, changes in the sectoral structure of the manufacturing industry, and changes in labor intensity (the inverse of labor productivity) which is a composite index of labour intensity change within each of the nine sub-sectors of total manufacturing. Second, we use PDA to further decompose labor intensity change to isolate the contribution of technical efficiency change, technological change, human capital change, change in non-robot capital intensity and change in robot capital intensity to employment change. In almost all of the countries considered, labour intensity is falling in entire manufacturing, exerting a dampening effect on employment. Robotization contributes to this development by reducing labor intensities and employment in all countries and sub-sectors, though to varying degrees. Manufacturing output, in turn, grows in all countries except Greece, Spain and Italy, which increases employment and counteracts or in some countries even more than offsets the dampening effect of declining labor intensities. The structural change within manufacturing has an almost neutral effect in many countries." (Author's abstract, IAB-Doku, © 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Cross-country skills-technology policy debates through large language models (2025)

    Einhoff, Jan; López Trejos, Isabella; Paunov, Caroline;

    Zitatform

    Einhoff, Jan, Isabella López Trejos & Caroline Paunov (2025): Cross-country skills-technology policy debates through large language models. (OECD science, technology and industry working papers 2025,20), Paris, 43 S. DOI:10.1787/d5f669be-en

    Abstract

    "Language models, this paper conducts a cross-country comparative innovation policy analysis of skills-technology policy debates across seven OECD member countries (Austria, Canada, Finland, Germany, Korea, Sweden, and the United Kingdom). Results highlight the dominance of STEM (science, technology, engineering and mathematics) and digital skills in these policy debates, the relative neglect of green skills, and the emphasis on soft skills across all technology fields. The analysis also identifies common policy instruments, which include collaborative platforms and direct financial support. Overall, the paper shows how large language models can help policy analysts identify patterns and gaps in extensive policy texts that nonetheless critically demands expert oversight and careful interpretation." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Artificial intelligence, hiring and employment: job postings evidence from Sweden (2025)

    Engberg, Erik; Hellsten, Mark; Sabolová, Radka; Lodefalk, Magnus ; Javed, Farrukh; Schroeder, Sarah ; Tang, Aili;

    Zitatform

    Engberg, Erik, Mark Hellsten, Farrukh Javed, Magnus Lodefalk, Radka Sabolová, Sarah Schroeder & Aili Tang (2025): Artificial intelligence, hiring and employment: job postings evidence from Sweden. In: Applied Economics Letters, S. 1-6. DOI:10.1080/13504851.2025.2497431

    Abstract

    "This paper investigates the impact of artificial intelligence (AI) on hiring and employment, using the universe of job postings published by the Swedish Public Employment Service from 2014 to 2022 and full-population administrative data for Sweden. We exploit a detailed measure of AI exposure according to occupational content and find that establishments exposed to AI are more likely to hire AI workers. Survey data further indicate that AI exposure aligns with greater use of AI services. Importantly, rather than displacing non-AI workers, AI exposure is positively associated with increased hiring for both AI and non-AI roles. In the absence of substantial productivity gains that might account for this increase, we interpret the positive link between AI exposure and non-AI hiring as evidence that establishments are using AI to augment existing roles and expand task capabilities, rather than to replace non-AI workers." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Die Arbeit: Wie wir sie mit KI neu erfinden … und was für uns übrig bleibt (2025)

    Gerpott, Fabiola H. ; Jansen, Stephan A.;

    Zitatform

    Gerpott, Fabiola H. & Stephan A. Jansen (2025): Die Arbeit. Wie wir sie mit KI neu erfinden … und was für uns übrig bleibt. Hamburg: brand eins books, 124 S.

    Abstract

    "Wie wird sich die Arbeitswelt im Zeitalter der künstlichen Intis zwischen dem Menschen und seinen neuen Maschinen – für andere Arbeit, andere Arbeitsteilungen, andere Führung und andere Bildung. Neben Studien aus der Wissenschaft bietet das Buch konkrete Handlungsempfehlungen für ein neues «Human Machine Resource Management», das nicht nur das Personalmanagement, sondern jeden von uns zu einer anregenderen und sinnstiftenderen Arbeit nutzen kann. Und es lädt dazu ein, an der Zukunft der Arbeit aktiv mitzuarbeiten. Zentrale Themen sind unter anderem die ethischen Implikationen, wenn Entscheidungen an Maschinen delegiert werden, die Auswirkungen auf die Diversität und Leistungsfähigkeit der Belegschaft sowie die Neugestaltung von Arbeitsräumen und HR-Prozessen." (Verlagsangaben, IAB-Doku)

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    The Impact of a New Workplace Technology on Employees (2025)

    Giebel, Marek ; Lammers, Alexander ;

    Zitatform

    Giebel, Marek & Alexander Lammers (2025): The Impact of a New Workplace Technology on Employees. In: Oxford Bulletin of Economics and Statistics, Jg. 87, H. 5, S. 1003-1024. DOI:10.1111/obes.12674

    Abstract

    "How does the implementation of a new technology affect workers? Using detailed worker-level data for Germany, we analyse the impact of new technologies on non-monetary working conditions such as overtime, training and perceived labor intensity. We show that the strongest effects arise in the first year of their implementation. These effects diminish after the introduction period. We further provide evidence that the impact of technology adoption varies across diverse occupational and industrial contexts. Workers in occupations with a higher task substitution potential show stronger increases in overtime, training measures and labor intensity. Analyzing industry characteristics, we find that employees exposed to a new technology react more strongly in industries with higher business dynamics in terms of organisational capital and R&D investment. Extending these considerations to information and communication technology (ICT) usage, we show that new technologies exert stronger effects in industries with high investment in ICT equipment or low investment in software." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Artificial intelligence and the wellbeing of workers (2025)

    Giuntella, Osea ; Konig, Johannes; Stella, Luca ;

    Zitatform

    Giuntella, Osea, Johannes Konig & Luca Stella (2025): Artificial intelligence and the wellbeing of workers. In: Scientific Reports, Jg. 15, H. 1. DOI:10.1038/s41598-025-98241-3

    Abstract

    "This study explores the relationship between artificial intelligence (AI) and workers’ well-being and healthusing longitudinal survey data from Germany (2000–2020). Using a measure of occupational exposure to AI, we explore an event study design and a difference-in-differences approach to compare AI-exposed and non-exposed workers. Before AI became widely available, there is no evidence of differential pre­trends in workers’ well-being and health. We findno evidence of a sizeable negative impact of AI on workers’ well-being and mental health. If anything, there is evidence of an improvement in health status and health satisfaction, which may be explained by the decline in job physical intensity. Overall, our results are consistent with the lack of negative effects of AI on the labor markets." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Governing the Digital Transition: The Moderating Effect of Unemployment Benefits on Technology‐Induced Employment Outcomes (2025)

    Golboyz, Mark ;

    Zitatform

    Golboyz, Mark (2025): Governing the Digital Transition: The Moderating Effect of Unemployment Benefits on Technology‐Induced Employment Outcomes. In: Social Inclusion, Jg. 13. DOI:10.17645/si.10114

    Abstract

    "The digital transition shapes work in numerous ways. For instance, by affecting employment structures. To ensure that the digital transition results in better employment opportunities in terms of socio-economic status, labor markets have to be guided appropriately. The European Pillar of Social Rights can be the political framework to foster access to employment and tackle inequalities that result from the digital transition. Current research primarily examines scenarios of occupational upgrading and employment polarisation. In the empirical literature, there is no consensus on which of these developments prevail. Findings vary between countries and across different study periods. Accordingly, this article provides a theoretical explanation for the conditions under which occupational upgrading and employment polarization become more likely. Further, this article examines how the use of information and communication technology (ICT) capital in the production of goods and services affects the socio-economic status of individuals and, more importantly, whether unemployment benefits moderate this effect. Methodologically, the article uses multilevel maximum likelihood regression models with an empirical focus on 12 European countries and 19 industries. The analysis is based on data from the European Labour Force Survey (EU-LFS), the European Union Level Analysis of Capital, Labour, Energy, Materials, and Service Inputs (EU-KLEMS) research project, and the Comparative Welfare Entitlements Project (CWEP). The results of the article indicate that generous unemployment benefits are associated with occupational upgrading. This implies that educational and vocational labor market policies need to be developed to prevent the under-skilled from being left behind and to enable these groups to benefit from the digital transition. Consequently, it is not only the extent to which work involves routine tasks or the skills of workers that determine how technological change affects employment, but also social rights shape employment through unemployment benefits." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    AI and employment in Europe (2025)

    Guarascio, Dario ; Reljic, Jelena ;

    Zitatform

    Guarascio, Dario & Jelena Reljic (2025): AI and employment in Europe. In: Economics Letters, Jg. 247. DOI:10.1016/j.econlet.2025.112183

    Abstract

    "This paper contributes to the growing research on AI's labor market impact by presenting novel evidence on the heterogeneous employment effects of AI across EU countries from 2012 to 2022. While concerns persist about AI's disruptive potential, our findings show that occupations more exposed to AI technologies experience stronger employment growth, all else being equal. However, these effects are not uniform across the EU. Positive employment outcomes are concentrated in Innovation Leaders (Belgium, Denmark, Finland, the Netherlands and Sweden) and Strong Innovators (Austria, Cyprus, France, Germany, Ireland and Luxembourg), emphasizing the context-dependent nature of AI's impact. These findings reflect the uneven distribution of innovation capabilities, with a country's innovation system and ‘absorptive capacity’ playing a crucial role in fully harnessing AI's potential for employment (and economic) growth. Ultimately, this research challenges the notion of AI as universally beneficial or harmful, highlighting its asymmetric effects across countries and occupations." (Author's abstract, IAB-Doku, © 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Diverging paths: AI exposure and employment across European regions (2025)

    Guarascio, Dario ; Reljic, Jelena ; Stöllinger, Roman;

    Zitatform

    Guarascio, Dario, Jelena Reljic & Roman Stöllinger (2025): Diverging paths: AI exposure and employment across European regions. In: Structural Change and Economic Dynamics, Jg. 73, S. 11-24. DOI:10.1016/j.strueco.2024.12.010

    Abstract

    "This study explores exposure to artificial intelligence (AI) technologies and employment patterns in Europe. First, we provide a thorough mapping of European regions focusing on the structural factors—such as sectoral specialisation, R&D capacity, productivity and workforce skills—that may shape diffusion as well as economic and employment effects of AI. To capture these differences, we conduct a cluster analysis which group EU regions in four distinct clusters: high-tech service and capital centres, advanced manufacturing core, southern and eastern periphery. We then discuss potential employment implications of AI in these regions, arguing that while regions with strong innovation systems may experience employment gains as AI complements existing capabilities and production systems, others are likely to face structural barriers that could eventually exacerbate regional disparities in the EU, with peripheral areas losing further ground." (Author's abstract, IAB-Doku, © 2024 The Author(s). Published by Elsevier B.V.) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Robots vs. Workers: Evidence From a Meta‐Analysis (2025)

    Guarascio, Dario ; Piccirillo, Alessandro; Reljic, Jelena ;

    Zitatform

    Guarascio, Dario, Alessandro Piccirillo & Jelena Reljic (2025): Robots vs. Workers: Evidence From a Meta‐Analysis. In: Journal of Economic Surveys, S. 1-18. DOI:10.1111/joes.12699

    Abstract

    "This study conducts a meta-analysis to assess the effects of robotization on employment and wages, synthesizing the evidence from 33 studies (644 estimates) on employment and a subset of 19 studies (195 estimates) on wages. The results challenge the alarmist narrative about the risk of widespread technological unemployment, suggesting that the overall relationship between robotization and employment or wages is minimal. However, the effects are far from uniform, with adverse outcomes observed in specific contexts, such as the United States, manufacturing sectors, and middle-skilled occupations. The analysis also identifies a publication bias favoring negative wage effects, though correcting for this bias confirms the negligible impact of robotization." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Generative KI: Schritt halten durch gezielte Kompetenzentwicklung (2025)

    Hammermann, Andrea; Kürten, Louisa;

    Zitatform

    Hammermann, Andrea & Louisa Kürten (2025): Generative KI: Schritt halten durch gezielte Kompetenzentwicklung. (IW-Kurzberichte / Institut der Deutschen Wirtschaft Köln 2025,24), Köln, 3 S.

    Abstract

    "Der Einsatz von generativer Künstlicher Intelligenz (KI) transformiert die Arbeitswelt in einem rasanten Tempo. Eine wichtige Säule zur Ausschöpfung der möglichen KI-Potenziale sind das Wissen und die Anwendungskompetenz von Beschäftigten. Weiterbildung und das Lernen am Arbeitsplatz gewinnen vor diesem Hintergrund an Bedeutung." (Autorenreferat, IAB-Doku)

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Artificial Intelligence and the Labor Market (2025)

    Hampole, Menaka; Schmidt, Lawrence D. W.; Seegmiller, Bryan ; Papanikolaou, Dimitris ;

    Zitatform

    Hampole, Menaka, Dimitris Papanikolaou, Lawrence D. W. Schmidt & Bryan Seegmiller (2025): Artificial Intelligence and the Labor Market. (NBER working paper / National Bureau of Economic Research 33509), Cambridge, Mass, 58 S.

    Abstract

    "We leverage recent advances in NLP to construct measures of workers' task exposure to AI and machine learning technologies over the 2010 to 2023 period that vary across firms and time. Using a theoretical framework that allows for a labor-saving technology to affect worker productivity both directly and indirectly, we show that the impact on wage earnings and employment can be summarized by two statistics. First, labor demand decreases in the average exposure of workers' tasks to AI technologies; second, holding the average exposure constant, labor demand increases in the dispersion of task exposures to AI, as workers shift effort to tasks that are not displaced by AI. Exploiting exogenous variation in our measures based on pre-existing hiring practices across firms, we find empirical support for these predictions, together with a lower demand for skills affected by AI. Overall, we find muted effects of AI on employment due to offsetting effects: highly-exposed occupations experience relatively lower demand compared to less exposed occupations, but the resulting increase in firm productivity increases overall employment across all occupations." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Generative AI's Impact on Student Achievement and Implications for Worker Productivity (2025)

    Hausman, Naomi ; Weisburd, Sarit; Rigbi, Oren;

    Zitatform

    Hausman, Naomi, Oren Rigbi & Sarit Weisburd (2025): Generative AI's Impact on Student Achievement and Implications for Worker Productivity. (CESifo working paper 11843), München, 39 S.

    Abstract

    "Student use of Artificial Intelligence (AI) in higher education is reshaping learning and redefining the skills of future workers. Using student-course data from a top Israeli university, we examine the impact of generative AI tools on academic performance. Comparisons across more and less AI-compatible courses before and after ChatGPT's introduction show that AI availability raises grades, especially for lower-performing students, and compresses the grade distribution, eroding the signal value of grades for employers. Evidence suggests gains in AI-specific human capital but possible losses in traditional human capital, highlighting benefits and costs AI may impose on future workforce productivity." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Large Language Models, Small Labor Market Effects (2025)

    Humlum, Anders; Vestergaard, Emilie ;

    Zitatform

    Humlum, Anders & Emilie Vestergaard (2025): Large Language Models, Small Labor Market Effects. (BFI Working Papers / University of Chicago, Becker Friedman Institute for Research in Economics 2025,56), Chicago, 64 S. DOI:10.2139/ssrn.5219933

    Abstract

    "We examine the labor market effects of AI chatbots using two large-scale adoption surveys (late 2023 and 2024) covering 11 exposed occupations (25,000 workers, 7,000 workplaces), linked to matched employer-employee data in Denmark. AI chatbots are now widespread —most employers encourage their use, many deploy in-house models, andtraining initiatives are common. These firm-led investments boost adoption, narrow demographic gaps in take-up, enhance workplace utility, and create new job tasks. Yet, despite substantial investments, economic impacts remain minimal. Using difference-in-differences and employer policies as quasi-experimental variation, we estimate precise zeros: AI chatbots have had no significant impact on earnings or recorded hours in any occupation, with confidence intervals ruling out effects larger than 1%. Modest productivity gains (average time savings of 3%), combined with weak wage pass-through, help explain these limited labor market effects. Our findings challenge narratives of imminent labor market transformation due to Generative AI." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Robots & AI exposure and wage inequality: a within occupation approach (2025)

    Jaccoud, Florencia ;

    Zitatform

    Jaccoud, Florencia (2025): Robots & AI exposure and wage inequality: a within occupation approach. In: Eurasian business review. DOI:10.1007/s40821-025-00306-w

    Abstract

    "This paper examines the linkages between occupational exposure to recent automation technologies and inequality across 19 European countries. Using data from the European Union Structure of Earnings Survey (EU-SES), a fixed-effects model is employed to assess the association between occupational exposure to artificial intelligence (AI) and to industrial robots–two distinct forms of automation–and within-occupation wage inequality. The analysis reveals that occupations with higher exposure to robots tend to have lower wage inequality, particularly among workers in the lower half of the wage distribution. In contrast, occupations more exposed to AI exhibit greater wage dispersion, especially at the top of the wage distribution. We argue that this disparity arises from differences in how each technology complements individual worker abilities: robot-related tasks often complement routine physical activities, while AI-related tasks tend to amplify the productivity of high-skilled, cognitively intensive work." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Wie lässt sich die Nachfrage nach KI- und anderen Kompetenzen auf dem Arbeitsmarkt besser messen? (2025)

    Janssen, Simon; Wiederhold, Simon ; Nagler, Markus ; Langer, Christina; Rounding, Nicholas; Stops, Michael ;

    Zitatform

    Janssen, Simon, Christina Langer, Markus Nagler, Nicholas Rounding, Michael Stops & Simon Wiederhold (2025): Wie lässt sich die Nachfrage nach KI- und anderen Kompetenzen auf dem Arbeitsmarkt besser messen? (ROA external reports / Researchcentrum voor Onderwijs en Arbeidsmarkt (Maastricht) 10 ai:conomics policybrief), Maastricht, 6 S.

    Abstract

    "Eine umfangreiche Forschungsliteratur zeigt, dass der technologische Wandel erhebliche Auswirkungen auf die Arbeitsmärkte hat, da moderne digitale Technologien die Nachfrage nach bestimmten Kompetenzen verändern. Zum einen können neue Technologien einige menschliche Tätigkeiten ersetzen. Zum anderen Seite können sie neue Tätigkeiten schaffen oder ergänzen (Acemoglu et al., 2015; Acemoglu & Restrepo, 2018, 2019, 2020). Mit der starken Verbreitung Künstlicher Intelligenz in den letzten Jahren gewinnen bestimmte Fragen in der öffentlichen Diskussion und der Forschung zunehmend an Bedeutung: Wächst die Arbeitsnachfrage nach KI-Kompetenzen auch auf dem deutschen Arbeitsmarkt? Führt die steigende Nachfrage nach KI-Kompetenzen dazu, dass andere Kompetenzen – bei niedrig-, mittel- und hochqualifizierten Arbeitskräften – weniger gefragt sind? Ziel dieses Forschungsprojekts ist es, eine belastbare Datengrundlage zu schaffen, um solche Fragen in Zukunft fundierter beantworten zu können. Die Entwicklungen bei generativer Künstlicher Intelligenz, insbesondere von Tools wie ChatGPT, hat die Diskussion über die Auswirkungen von KI auf den Arbeitsmarkt sowohl in der Wissenschaft als auch in der öffentlichen Debatte und in der Politik deutlich verstärkt. Während Computer und Software die Arbeitswelt durch die präzisere und effizientere Ausführung routinemäßiger Aufgaben verändert haben, können moderne KI-Systeme nun komplexe, nichtroutinemäßige Aufgaben übernehmen, ohne auf detaillierte Anweisungen oder wiederholende Regeln angewiesen zu sein (Brynjolfsson et al., 2025). Infolgedessen sehen viele das produktive Potenzial dieser neuen Technologie optimistisch. Andere hingegen befürchten, dass KI die Arbeitsmärkte disruptiv verändern könnte." (Autorenreferat, IAB-Doku)

    Beteiligte aus dem IAB

    Janssen, Simon; Stops, Michael ;
    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    How can we better measure the demand for AI and other skills on the labour market? (2025)

    Janssen, Simon; Wiederhold, Simon ; Rounding, Nicholas; Langer, Christina; Nagler, Markus ; Stops, Michael ;

    Zitatform

    Janssen, Simon, Christina Langer, Markus Nagler, Nicholas Rounding, Michael Stops & Simon Wiederhold (2025): How can we better measure the demand for AI and other skills on the labour market? (ROA external reports / Researchcentrum voor Onderwijs en Arbeidsmarkt (Maastricht) 10 ai:conomics policybrief), Maastricht, 5 S.

    Abstract

    "A large body of research literature shows that technological change has a significant impact on labour markets, as modern digital technologies are changing the demand for certain skills. On the one hand, new technologies can replace some human activities. On the other hand, they can create or complement new activities (Acemoglu et al., 2015; Acemoglu & Restrepo, 2018, 2019, 2020). With the proliferation of artificial intelligence (AI) in recent years, certain questions are becoming increasingly important in public debate and research: Is the demand for AI skills also growing on the German labour market? Does the increasing demand for AI skills mean that other skills - among low, medium and highly qualified workers - are less in demand? The aim of this research project is to create a reliable data basis in order to be able to answer such questions in a more informed way in the future. Developments in generative AI, particularly tools such as ChatGPT, have significantly intensified the discussion about the impact of AI on the labour market, both in academia and in public debate and policy. While computers and software have transformed the world of work by performing routine tasks more precisely and efficiently, modern AI systems can now take on complex, non-routine tasks without relying on detailed instructions or repetitive rules (Brynjolfsson et al., 2025). As a result, many are optimistic about the productive potential of this new technology. Others, however, fear that AI could disrupt labour markets. In the course of the intensive scientific and public debate on AI, there is a growing body of literature that deals with the effects of AI on labour markets. These initially focus on specific occupations such as call centre workers (Brynjolfsson et al., 2025, Dijksman et al., 2024), consultants (Dell’ et al., 2023), writers or developers (Peng et al., 2023). However, a major challenge is to measure how the demand for and supply of skills has changed in the wake of the emergence of AI." (Autorenreferat, IAB-Doku)

    Beteiligte aus dem IAB

    Janssen, Simon; Stops, Michael ;
    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Artificial intelligence in the workplace: insights into the transformation of customer services (2025)

    Janssen, Simon; Stops, Michael ; Dijksman, Sander; Montizaan, Raymond ; Steens, Sanne; Levels, Mark ; Rounding, Nicholas; Fourage, Didier; Özgül, Pelin; Fregin, Marie-Christine ; Eijkenboom, Danique; Graus, Evie;

    Zitatform

    Janssen, Simon, Michael Stops, Sanne Steens, Pelin Özgül, Nicholas Rounding, Sander Dijksman, Raymond Montizaan, Mark Levels, Didier Fourage, Danique Eijkenboom, Evie Graus & Marie-Christine Fregin (2025): Artificial intelligence in the workplace: insights into the transformation of customer services. In: IAB-Forum H. 22.04.2025, 2025-04-22. DOI:10.48720/IAB.FOO.20250422.01

    Abstract

    "How does the use of artificial intelligence in training affect employee productivity? These and other questions were investigated as part of the long-term research project “ai:conomics” using company data from various large European companies. Initial results suggest that AI can have a positive impact on employee productivity, especially for new employees." (Author's abstract, IAB-Doku) ((en))

    Beteiligte aus dem IAB

    Janssen, Simon; Stops, Michael ;
    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Does AI at Work Increase Stress? Text Mining Social Media About Human–AI Team Processes and AI Control (2025)

    Klonek, Florian ; Parker, Sharon ;

    Zitatform

    Klonek, Florian & Sharon Parker (2025): Does AI at Work Increase Stress? Text Mining Social Media About Human–AI Team Processes and AI Control. In: Journal of organizational behavior, S. 1-15. DOI:10.1002/job.70000

    Abstract

    "With rising use of artificial intelligence (AI) in organizations, alongside increasing mental health issues, we seek to understand how AI use affects human stress. Drawing on the automation–augmentation perspective, we propose that AI control over decision-making thwarts human autonomy and thus contributes to stress. Drawing on models of teamwork and augmentation, we expect that human–AI team processes (i.e., transition, action, and interpersonal processes) help people meet their goals and reduce stress. Finally, we argue that human–AI team processes provide an important social resource, which buffers the stress-enhancing role of AI control. To test our hypotheses, we analyzed over 2700 tweets. Using a trained large language model, validated against human ratings, we indexed key measures. Results confirm that high AI control was associated with increased stress, whereas human–AI team processes were associated with decreased stress. In support of the moderation hypothesis, two human–AI team processes (action and interpersonal) helped further reduce the stress-enhancing effect of AI control. We discuss implications for work design theory and the importance of regulating levels of AI control to protect workers' mental health." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    KI Navigator #10: Wie KI dem Arbeitsmarkt hilft (2025)

    Koch, Christian ; Stops, Michael ;

    Zitatform

    Koch, Christian & Michael Stops (2025): KI Navigator #10: Wie KI dem Arbeitsmarkt hilft. In: Heise online, 2025-03-14.

    Abstract

    "Stellenanzeigen können viel über den Wandel des Arbeitsmarkts verraten. Künstliche Intelligenz hilft dabei, diese Daten zu interpretieren."

    Beteiligte aus dem IAB

    Stops, Michael ;
    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Automation in shared service centres: Implications for skills and autonomy (2025)

    Kowalik, Zuzanna ; Lewandowski, Piotr ; Geodecki, Tomasz; Grodzicki, Maciej;

    Zitatform

    Kowalik, Zuzanna, Piotr Lewandowski, Tomasz Geodecki & Maciej Grodzicki (2025): Automation in shared service centres: Implications for skills and autonomy. In: The Economic and Labour Relations Review, S. 1-19. DOI:10.1017/elr.2025.10026

    Abstract

    "The offshoring-fueled growth of the Central and Eastern European business services sector gave rise to shared service centers (SSCs) – quasi-autonomous entities providing routine-intensive tasks for the central organization. The advent of technologies such as intelligent process automation, robotic process automation, and artificial intelligence jeopardises SSCs’ employment model, necessitating workers’ skills adaptation. The study challenges the deskilling hypothesis and reveals that automation in the Polish SSCs is conducive to upskilling and worker autonomy. Drawing on 31 in-depth interviews, we highlight the negotiated nature of automation processes shaped by interactions between headquarters, SSCs, and their workers. Workers actively participated in automation processes, eliminating the most mundane tasks. This resulted in upskilling, higher job satisfaction, and empowerment. Yet, this phenomenon heavily depends upon the fact that automation is triggered by labor shortages, which limit the expansion of SSCs. This situation encourages companies to leverage the specific expertise entrenched in their existing workforce. The study underscores the importance of fostering employee-driven automation and upskilling initiatives for overall job satisfaction and quality." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Between control and participation: The politics of algorithmic management (2025)

    Krzywdzinski, Martin ; Sperling, Andrea; Schneiß, Daniel ;

    Zitatform

    Krzywdzinski, Martin, Daniel Schneiß & Andrea Sperling (2025): Between control and participation: The politics of algorithmic management. In: New Technology, Work and Employment, Jg. 40, H. 1, S. 60-80. DOI:10.1111/ntwe.12293

    Abstract

    "Understanding the role of human management is crucial for the debate over algorithmic management—to date limited to studies on the platform economy. This qualitative case study in logistics reconstructs the actor constellations (managers, engineers, data scientists and workers) and negotiation processes in different phases of algorithmic management. It offers two major contributions to the literature: (1) a process model distinguishing three phases: goal formation, data production and data analysis, which is used to analyse (2) the politics of algorithmic management in conventional workplaces, which differ significantly from platform companies. The article goes beyond surveillance to elucidate the role of the regulatory framework, various actors' knowledge contributions to the algorithmic management system, and the power relations resulting therefrom. While the managerial goals in the examined case were not oriented towards a surveillance regime, the outcome was nevertheless a centralisation of knowledge and disempowerment of workers." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Das Produktionsmodell der deutschen Automobilindustrie auf dem Prüfstand: Arbeitsstrukturen und Arbeitsanforderungen in Montagewerken im Wandel? (2025)

    Kuhlmann, Martin; Theuer, Stefan; Matthes, Britta ;

    Zitatform

    Kuhlmann, Martin, Britta Matthes & Stefan Theuer (2025): Das Produktionsmodell der deutschen Automobilindustrie auf dem Prüfstand. Arbeitsstrukturen und Arbeitsanforderungen in Montagewerken im Wandel? (SOFI-Impulspapier), Göttingen, 6 S.

    Abstract

    "Das in den 1980er-Jahren etablierte Produktionsmodell der deutschen Automobilhersteller lässt sich beschreiben als innovations- und exportorientierte Produktion qualitativ hochwertiger Produkte auf Basis qualifizierter Arbeit, guter Bezahlung und hoher Beschäftigungssicherheit sowie starken gewerkschaftlichen Interessenvertretungen. Politische Vorgaben, wie die Umstellung auf die Produktion von Elektroautos, veränderte Wettbewerbsbedingungen sowie die weiter voranschreitende Digitalisierung haben dazu geführt, dass dieses Produktionsmodell derzeit auf dem Prüfstand steht. Getrieben durch aufkommende Zweifel an der technologischen Überlegenheit deutscher Automobilhersteller und Nachfrageschwächen beim Übergang auf Elektromobilität ist die Unsicherheit in der Branche gegenwärtig groß. In einem laufenden Forschungsprojekt untersuchen wir, inwiefern sich durch die Produktion von Elektroautos und die fortschreitende Digitalisierung Arbeitsstrukturen und Arbeitsanforderungen in den Endmontagewerken der deutschen Automobilhersteller verändert haben und ob sich arbeitsbezogen ein Wandel des deutschen Produktionsmodells abzeichnet." (Autorenreferat, IAB-Doku)

    Beteiligte aus dem IAB

    Theuer, Stefan; Matthes, Britta ;
    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Digitalisierung der Arbeitswelt: Durch künstliche Intelligenz sind inzwischen auch viele Expertentätigkeiten ersetzbar (2025)

    Kuhn, Sarah; Seibert, Holger;

    Zitatform

    Kuhn, Sarah & Holger Seibert (2025): Digitalisierung der Arbeitswelt: Durch künstliche Intelligenz sind inzwischen auch viele Expertentätigkeiten ersetzbar. (IAB-Regional. Berichte und Analysen aus dem Regionalen Forschungsnetz. IAB Berlin-Brandenburg 01/2025), 34 S. DOI:10.48720/IAB.REBB.2501

    Abstract

    "Durch neue digitale Technologien verändert sich der deutsche Arbeitsmarkt. Dies gilt besonders für das Ausmaß, in dem Berufe aktuell potenziell durch den Einsatz von Computern oder computergesteuerten Maschinen ersetzbar sind, dem so genannten Substituierbarkeitspotenzial. Es beschreibt, welcher Anteil an Tätigkeiten in einem Beruf schon heute durch den Einsatz moderner Technologien ersetzt werden könnte. Nach wie vor ist zwar das Substituierbarkeitspotenzial bei den Helfer*innen- und Fachkraftberufen am höchsten. Am stärksten gestiegen ist das Potenzial jedoch bei den Expert*innenberufen (u. a. durch generative Künstliche Intelligenz). Besonders bei den IT- und naturwissenschaftlichen Dienstleistungsberufen sind hohe Zuwachsraten zwischen 2019 und 2022 zu verzeichnen. Der vorliegende Beitrag fokussiert sich auf den Arbeitsmarkt in Brandenburg und Berlin. Wichtig zu betonen ist, dass es hier um Potenziale technischer Ersetzbarkeit geht. Ob und inwiefern die technischen Möglichkeiten auch tatsächlich umgesetzt werden, steht nicht fest. Es kann Gründe geben, die gegen eine tatsächliche Substituierung sprechen, beispielsweise weil eine Umstellung zu komplex wäre oder ethische Bedenken dem entgegenstehen. Unstrittig ist jedoch, dass auf der einen Seite einige Tätigkeiten durch die Digitalisierung wegfallen bzw. automatisiert werden, andererseits aber auch neue Tätigkeiten und Berufe entstehen. Daher kann ein hohes Substituierungspotenzial als Indikator für einen Wandel der Arbeitswelt gesehen werden." (Autorenreferat, IAB-Doku)

    Beteiligte aus dem IAB

    Kuhn, Sarah; Seibert, Holger;
    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Konstanzer KI-Studie 2025: Die Nutzung von Künstlicher Intelligenz in der Arbeitswelt steigt, Ungleichheiten in der Wahrnehmung bleiben weiterhin bestehen. Ergebnisbericht Juli 2025 (2025)

    Kunze, Florian ; Opitz, Carolina; Lauterbach, Ann Sophie ;

    Zitatform

    Kunze, Florian, Carolina Opitz & Ann Sophie Lauterbach (2025): Konstanzer KI-Studie 2025: Die Nutzung von Künstlicher Intelligenz in der Arbeitswelt steigt, Ungleichheiten in der Wahrnehmung bleiben weiterhin bestehen. Ergebnisbericht Juli 2025. Konstanz: KOPS Universität Konstanz, 8 S.

    Abstract

    "Die Nutzung von KI in der Arbeitswelt hat innerhalb eines Jahres deutlich zugenommen – gleichzeitig bleiben erhebliche Unterschiede zwischen Berufsgruppen, Bildungsniveaus und Unternehmen bestehen. In der zweiten Welle der Konstanzer KI-Studie berichten 35?% der Befragten von KI-Nutzung im Arbeitsalltag, ein Anstieg um 11 Prozentpunkte gegenüber dem Vorjahr. Trotz dieses Wachstums bleibt die Unsicherheit hoch: Ein Drittel der Beschäftigten kann weiterhin nicht einschätzen, welche Folgen KI für die eigene Arbeit haben wird. Zugleich wird der gesellschaftliche Einfluss von Automatisierung deutlich bedrohlicher wahrgenommen als die persönliche Betroffenheit. Besonders stark ist der Nutzungszuwachs in wissensintensiven Berufen, während produktionsnahe Tätigkeiten kaum aufholen. Auch die Kluft zwischen Bildungsgruppen bleibt bestehen: Beschäftigte mit hohem Bildungsabschluss nutzen KI mehr als dreimal so häufig wie jene mit niedrigem Abschluss. Zwar steigt die Bereitschaft zur Weiterbildung in allen Gruppen, strukturelle Hürden scheinen jedoch eine Angleichung zu verhindern. Auf Ebene der Organisationen verlaufen die Entwicklungen deutlich langsamer als auf individueller Ebene. Vor allem große Unternehmen investieren zunehmend in Weiterbildung und Führungskommunikation, während kleinere Organisationen kaum Veränderungen zeigen. Die Ergebnisse zeigen deutlich, dass KI ihr Potenzial nicht gleichmäßig entfaltet, sondern bestehende strukturelle Ungleichheiten eher verstärkt. Nach wie vor besteht die reale Gefahr, dass sich bestimmte Beschäftigtengruppen zunehmend vom technologischen Fortschritt abkoppeln, weil ihnen der Zugang zu KI-Nutzung, Weiterbildungsangeboten und betrieblicher Unterstützung fehlt. Daraus ergibt sich ein klarer Handlungsauftrag an Wirtschaft, Politik und Bildungseinrichtungen, um Teilhabechancen gezielt zu fördern und einer wachsenden sozialen Spaltung frühzeitig entgegenzuwirken." (Textauszug, IAB-Doku)

    mehr Informationen
    weniger Informationen
  • Literaturhinweis

    Do robots decrease humans’ wages? (2025)

    Logchies, Thomas; Coupé, Tom ; Reed, W. Robert ;

    Zitatform

    Logchies, Thomas, Tom Coupé & W. Robert Reed (2025): Do robots decrease humans’ wages? In: Applied Economics Letters, S. 1-5. DOI:10.1080/13504851.2025.2466748

    Abstract

    "While there are studies that show a positive or negative impact of robots on wages, a meta-analysis of 2,586 estimates from 52 studies in this paper finds that when one looks at the literature as a whole, there is no clear evidence of a sizable impact of robots on wages." (Author's abstract, IAB-Doku) ((en))

    mehr Informationen
    weniger Informationen